Divisibility of Fermat Quotients
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 116-122
Cet article a éte moissonné depuis la source Math-Net.Ru
For any $\varepsilon >0$ and all primes $p$, with the exception of primes from a set with relative zero density, there exists a natural number $a\le(\log p)^{3/2+\varepsilon}$ for which the congruence $a^{p-1}\equiv 1 \,(\operatorname{mod} p^{2})$ does not hold.
Mots-clés :
Fermat quotient
Keywords: smooth number, coset, oriented graph.
Keywords: smooth number, coset, oriented graph.
@article{MZM_2012_92_1_a10,
author = {Yu. N. Shteinikov},
title = {Divisibility of {Fermat} {Quotients}},
journal = {Matemati\v{c}eskie zametki},
pages = {116--122},
year = {2012},
volume = {92},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a10/}
}
Yu. N. Shteinikov. Divisibility of Fermat Quotients. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 116-122. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a10/
[1] H. W. Lenstra, Jr., “Miller's primality test”, Inform. Process. Lett., 8:2 (1979), 86–88 | DOI | MR | Zbl
[2] A. Granville, “On pairs of coprime integers with no large prime factors”, Exposition. Math., 9:4 (1991), 335–350 | MR | Zbl
[3] A. Ostafe, I. E. Shparlinski, Pseudorandomness and Dynamics of Fermat Quotients, arXiv: math.NT/1001.1504
[4] J. Bourgain, K. Ford, S. V. Konyagin, I. E. Shparlinskii, “On the divisibility of Fermat quotients”, Michigan Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl
[5] S. V. Konyagin, C. Pomerance, “On primes recognizable in deterministic polynomial time”, The Mathematics of Paul Erdős, I, Algorithms Combin., 13, Springer-Verlag, Berlin, 1997, 176–198 | MR | Zbl