Divisibility of Fermat Quotients
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 116-122
Voir la notice de l'article provenant de la source Math-Net.Ru
For any $\varepsilon >0$ and all primes $p$, with the exception of primes from a set with relative zero density, there exists a natural number $a\le(\log p)^{3/2+\varepsilon}$ for which the congruence $a^{p-1}\equiv 1 \,(\operatorname{mod} p^{2})$ does not hold.
Mots-clés :
Fermat quotient
Keywords: smooth number, coset, oriented graph.
Keywords: smooth number, coset, oriented graph.
@article{MZM_2012_92_1_a10,
author = {Yu. N. Shteinikov},
title = {Divisibility of {Fermat} {Quotients}},
journal = {Matemati\v{c}eskie zametki},
pages = {116--122},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a10/}
}
Yu. N. Shteinikov. Divisibility of Fermat Quotients. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 116-122. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a10/