Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 19-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an interpolation process with algebraic polynomials of degree $n$ on equidistant nodes of an $m$-simplex for $m\ge 2$, we obtain a pointwise lower bound for the Lebesgue function similar to the well-known estimate for interpolation on a closed interval.
Mots-clés : interpolation process, equidistant nodes, algebraic polynomial, Lebesgue function, $m$-simplex, Lebesgue constant.
@article{MZM_2012_92_1_a1,
     author = {N. V. Baidakova},
     title = {Lower {Bound} for the {Lebesgue} {Function} of an {Interpolation} {Process} with {Algebraic} {Polynomials} on {Equidistant} {Nodes} of a {Simplex}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex
JO  - Matematičeskie zametki
PY  - 2012
SP  - 19
EP  - 26
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/
LA  - ru
ID  - MZM_2012_92_1_a1
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex
%J Matematičeskie zametki
%D 2012
%P 19-26
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/
%G ru
%F MZM_2012_92_1_a1
N. V. Baidakova. Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/

[1] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR | Zbl

[2] A. G. Kurosh, Kurs vysshei algebry, Nauka, M., 1971 | MR | Zbl

[3] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Leningr. un-ta, L., 1977 | MR | Zbl

[4] I. P. Natanson, Konstruktivnaya teoriya funktsii, Gos. izd-vo tekhn.-teoret. lit-ry, M.–L., 1949 | MR | Zbl

[5] N. V. Baidakova, “O poryadke konstant Lebega interpolyatsionnogo protsessa algebraicheskimi mnogochlenami po ravnomernym uzlam simpleksa”, Matem. zametki, 77:6 (2005), 814–831 | MR | Zbl

[6] A. Kh. Turetskii, Teoriya interpolirovaniya v zadachakh, Vysheishaya shkola, Minsk, 1968 | MR

[7] R. A. Nicolaides, “On the class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR | Zbl