Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 19-26
Voir la notice de l'article provenant de la source Math-Net.Ru
For an interpolation process with algebraic polynomials of degree $n$ on equidistant nodes of an $m$-simplex for $m\ge 2$, we obtain a pointwise lower bound for the Lebesgue function similar to the well-known estimate for interpolation on a closed interval.
Mots-clés :
interpolation process, equidistant nodes, algebraic polynomial, Lebesgue function, $m$-simplex, Lebesgue constant.
@article{MZM_2012_92_1_a1,
author = {N. V. Baidakova},
title = {Lower {Bound} for the {Lebesgue} {Function} of an {Interpolation} {Process} with {Algebraic} {Polynomials} on {Equidistant} {Nodes} of a {Simplex}},
journal = {Matemati\v{c}eskie zametki},
pages = {19--26},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/}
}
TY - JOUR AU - N. V. Baidakova TI - Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex JO - Matematičeskie zametki PY - 2012 SP - 19 EP - 26 VL - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/ LA - ru ID - MZM_2012_92_1_a1 ER -
%0 Journal Article %A N. V. Baidakova %T Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex %J Matematičeskie zametki %D 2012 %P 19-26 %V 92 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/ %G ru %F MZM_2012_92_1_a1
N. V. Baidakova. Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a1/