Holomorphic Affine Vector Fields on Weil Bundles
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 896-899.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for a holomorphic vector field to be affine for a holomorphic linear connection defined on a Weil bundle. We also prove that the Lie algebra over $\mathbb{R}$ of holomorphic affine vector fields for the natural prolongation of a linear connection from the base to the Weil bundle is isomorphic to the tensor product of the Weil algebra by the Lie algebra of affine vector fields on the base.
Mots-clés : Weil algebra, affine structure, prolongation of connections.
Keywords: Weil bundle, holomorphic vector field, holomorphic connection, affine vector field
@article{MZM_2012_91_6_a9,
     author = {A. Ya. Sultanov},
     title = {Holomorphic {Affine} {Vector} {Fields} on {Weil} {Bundles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {896--899},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a9/}
}
TY  - JOUR
AU  - A. Ya. Sultanov
TI  - Holomorphic Affine Vector Fields on Weil Bundles
JO  - Matematičeskie zametki
PY  - 2012
SP  - 896
EP  - 899
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a9/
LA  - ru
ID  - MZM_2012_91_6_a9
ER  - 
%0 Journal Article
%A A. Ya. Sultanov
%T Holomorphic Affine Vector Fields on Weil Bundles
%J Matematičeskie zametki
%D 2012
%P 896-899
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a9/
%G ru
%F MZM_2012_91_6_a9
A. Ya. Sultanov. Holomorphic Affine Vector Fields on Weil Bundles. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 896-899. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a9/

[1] A. Weil, “Théorie des points proches sur les variétés différentiables”, Géométrie différentielle, Colloques Internationaux du Centre National de la Recherche Scientifique, 52, Centre National de la Recherche Scientifique, Paris, 1953, 111–117 | MR | Zbl

[2] A. P. Shirokov, “Geometriya kasatelnykh rassloenii i prostranstva nad algebrami”, Itogi nauki i tekhn. Ser. Probl. geom., 12, VINITI, M., 1981, 61–95 | MR | Zbl

[3] V. V. Shurygin, “Gladkie mnogoobraziya nad lokalnymi algebrami i rassloeniya Veilya”, Geometriya – 7, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 73, VINITI, M., 2002, 162–236 | MR | Zbl

[4] Kolář, “Affine structure on Weil bundles”, Nagoya Math. J., 158 (2000), 99–106 | MR | Zbl

[5] A. Morimoto, “Prolongation of connections to bundles of infinitely near points”, J. Differential Geometry, 11:4 (1976), 479–498 | MR | Zbl

[6] A. Ya. Sultanov, “Prodolzheniya tenzornykh polei i svyaznostei v rassloeniya Veilya”, Izv. vuzov. Matem., 1999, no. 9, 64–72 | MR | Zbl