$\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 870-879.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring. This paper introduces and studies $\mathcal{GP}$-projective and $\mathcal{GI}$-injective left $R$-modules. Our main goal is to investigate the “global” dimension $$ \operatorname{GPID}(R)=\sup\{\operatorname{id}(M)\mid M\in{_R\mathcal{M}},\,\text{$M$ is Gorenstein projective}\}. $$
Keywords: Gorenstein dimension, $\mathcal{GP}$-projective module, $\mathcal{GI}$-injective module, left-$\operatorname{GPI}$ ring, semisimple ring.
@article{MZM_2012_91_6_a7,
     author = {Q. X. Pan and X. L. Zhu},
     title = {$\mathcal{GP}${-Projective} and $\mathcal{GI}${-Injective} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {870--879},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/}
}
TY  - JOUR
AU  - Q. X. Pan
AU  - X. L. Zhu
TI  - $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
JO  - Matematičeskie zametki
PY  - 2012
SP  - 870
EP  - 879
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/
LA  - ru
ID  - MZM_2012_91_6_a7
ER  - 
%0 Journal Article
%A Q. X. Pan
%A X. L. Zhu
%T $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
%J Matematičeskie zametki
%D 2012
%P 870-879
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/
%G ru
%F MZM_2012_91_6_a7
Q. X. Pan; X. L. Zhu. $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 870-879. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/

[1] D. Bennis, N. Mahdou, “Global Gorenstein dimensions”, Proc. Amer. Math. Soc., 138:2 (2010), 461–465 | DOI | MR | Zbl

[2] H. Bass, “Finitistic dimension and a homological generalization of semi-primary rings”, Trans. Amer. Math. Soc., 95 (1960), 466–488 | DOI | MR | Zbl

[3] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra, 189:1-3 (2004), 167–193 | DOI | MR | Zbl

[4] D. Bennis, N. Mahdou, “A generalization of strongly Gorenstein projective modules”, J. Algebra Appl., 8:2 (2009), 219–227 | DOI | MR | Zbl

[5] N. Mahdou, M. Tamekkante, “On (strongly) Gorenstein (semi) hereditary rings”, Arab. J. Sci. Eng., 36:3 (2011), 431–440 | MR | Zbl

[6] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[7] D. Bennis, N. Mahdoua, K. Ouarghi, “Rings over which all modules are strongly Gorenstein projective”, Rocky Mountain J. Math., 40:3 (2010), 749–759 | DOI | MR | Zbl

[8] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math., 85, Academic Press, New York, 1979 | MR | Zbl

[9] D. Bennis, N. Mahdou, “Strongly Gorenstein projective, injective, and flat modules”, J. Pure Appl. Algebra, 210:2 (2007), 437–445 | DOI | MR | Zbl

[10] H. Holm, “Rings with finite Gorenstein injective dimension”, Proc. Amer. Math. Soc., 132:5 (2004), 1279–1283 | DOI | MR | Zbl

[11] C. U. Jensen, “On the vanishing of $\varprojlim^{(i)}$”, J. Algebra, 15:2 (1970), 151–166 | DOI | MR | Zbl

[12] T. Ishikawa, “On injective modules and flat modules”, J. Math. Soc. Japan, 17:3 (1965), 291–296 | DOI | MR | Zbl