$\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 870-879

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring. This paper introduces and studies $\mathcal{GP}$-projective and $\mathcal{GI}$-injective left $R$-modules. Our main goal is to investigate the “global” dimension $$ \operatorname{GPID}(R)=\sup\{\operatorname{id}(M)\mid M\in{_R\mathcal{M}},\,\text{$M$ is Gorenstein projective}\}. $$
Keywords: Gorenstein dimension, $\mathcal{GP}$-projective module, $\mathcal{GI}$-injective module, left-$\operatorname{GPI}$ ring, semisimple ring.
@article{MZM_2012_91_6_a7,
     author = {Q. X. Pan and X. L. Zhu},
     title = {$\mathcal{GP}${-Projective} and $\mathcal{GI}${-Injective} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {870--879},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/}
}
TY  - JOUR
AU  - Q. X. Pan
AU  - X. L. Zhu
TI  - $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
JO  - Matematičeskie zametki
PY  - 2012
SP  - 870
EP  - 879
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/
LA  - ru
ID  - MZM_2012_91_6_a7
ER  - 
%0 Journal Article
%A Q. X. Pan
%A X. L. Zhu
%T $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
%J Matematičeskie zametki
%D 2012
%P 870-879
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/
%G ru
%F MZM_2012_91_6_a7
Q. X. Pan; X. L. Zhu. $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 870-879. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/