$\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 870-879
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a ring. This paper introduces and studies $\mathcal{GP}$-projective and $\mathcal{GI}$-injective left $R$-modules. Our main goal is to investigate the “global” dimension
$$
\operatorname{GPID}(R)=\sup\{\operatorname{id}(M)\mid M\in{_R\mathcal{M}},\,\text{$M$ is Gorenstein projective}\}.
$$
Keywords:
Gorenstein dimension, $\mathcal{GP}$-projective module, $\mathcal{GI}$-injective module, left-$\operatorname{GPI}$ ring, semisimple ring.
@article{MZM_2012_91_6_a7,
author = {Q. X. Pan and X. L. Zhu},
title = {$\mathcal{GP}${-Projective} and $\mathcal{GI}${-Injective} {Modules}},
journal = {Matemati\v{c}eskie zametki},
pages = {870--879},
publisher = {mathdoc},
volume = {91},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/}
}
Q. X. Pan; X. L. Zhu. $\mathcal{GP}$-Projective and $\mathcal{GI}$-Injective Modules. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 870-879. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a7/