Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_6_a5, author = {Yu. V. Malykhin}, title = {Bracketing {Entropy} and {VC-Dimension}}, journal = {Matemati\v{c}eskie zametki}, pages = {853--860}, publisher = {mathdoc}, volume = {91}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a5/} }
Yu. V. Malykhin. Bracketing Entropy and VC-Dimension. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 853-860. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a5/
[1] V. N. Vapnik, A. Ya. Chervonenkis, “O ravnomernoi skhodimosti chastot poyavleniya sobytii k ikh veroyatnostyam”, DAN SSSR, 181:4 (1968), 781–783 | MR | Zbl
[2] D. Haussler, “Decision theoretic generalizations of the PAC model for neural net and other learning applications”, Inform. and Comput., 100:1 (1992), 78–150 | DOI | MR | Zbl
[3] J. R. Blum, “On the convergence of empiric distribution functions”, Ann. Math. Statist., 26:3 (1955), 527–529 | DOI | MR | Zbl
[4] J. Dehardt, “Generalizations of the Glivenko–Cantelli theorem”, Ann. Math. Statist., 42:6 (1971), 2050–2055 | DOI | MR | Zbl
[5] Yu. V. Malykhin, “Usrednennyi modul nepreryvnosti i skobochnaya kompaktnost”, Matem. zametki, 87:3 (2010), 468–471 | MR | Zbl
[6] D. Haussler, “Sphere packing numbers for subsets of the Boolean $n$-cube with bounded Vapnik–Chervonenkis dimension”, J. Combin. Theory Ser. A, 69:2 (1995), 217–232 | DOI | MR | Zbl
[7] T. M. Adams, A. B. Nobel, Uniform Approximation and Bracketing Properties of VC Classes, arXiv: math.PR/1007.4037