Effective Compactness and Sigma-Compactness
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 840-852
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the Gandy–Harrington topology and other methods of effective descriptive set theory, we prove several theorems about compact and $\sigma$-compact sets. In particular, it is proved that any $\Delta_1^1$-set $A$ in the Baire space $\mathscr N$ either is an at most countable union of compact $\Delta_1^1$-sets (and hence is $\sigma$-compact) or contains a relatively closed subset homeomorphic to $\mathscr N$ (in this case, of course, $A$ cannot be $\sigma$-compact).
Keywords:
effective descriptive set theory, effectively compact, $\sigma$-compact, the Baire space, Gandy–Harrington topology, $\Delta^1_1$-set.
@article{MZM_2012_91_6_a4,
author = {V. G. Kanovei and V. A. Lyubetskii},
title = {Effective {Compactness} and {Sigma-Compactness}},
journal = {Matemati\v{c}eskie zametki},
pages = {840--852},
publisher = {mathdoc},
volume = {91},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a4/}
}
V. G. Kanovei; V. A. Lyubetskii. Effective Compactness and Sigma-Compactness. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 840-852. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a4/