$2$-Chebyshev Subspaces in the Spaces~$L_1$ and~$C$
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 819-831

Voir la notice de l'article provenant de la source Math-Net.Ru

The $2$-uniqueness subspaces and the finite-dimensional $2$-Chebyshev subspaces of the space $C$ of functions continuous on a Hausdorff compact set and of the space $L_1$ of functions Lebesgue integrable on a set of $\sigma$-finite measure are described. These descriptions are analogs of the well-known Haar and Phelps theorems for ordinary Chebyshev subspaces.
Keywords: Banach space, Hilbert space, $2$-Chebyshev subspace, $2$-uniqueness subspace, $2$-existence subspace, the space $L_1$ of Lebesgue integrable functions.
@article{MZM_2012_91_6_a2,
     author = {P. A. Borodin},
     title = {$2${-Chebyshev} {Subspaces} in the {Spaces~}$L_1$ and~$C$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {819--831},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a2/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - $2$-Chebyshev Subspaces in the Spaces~$L_1$ and~$C$
JO  - Matematičeskie zametki
PY  - 2012
SP  - 819
EP  - 831
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a2/
LA  - ru
ID  - MZM_2012_91_6_a2
ER  - 
%0 Journal Article
%A P. A. Borodin
%T $2$-Chebyshev Subspaces in the Spaces~$L_1$ and~$C$
%J Matematičeskie zametki
%D 2012
%P 819-831
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a2/
%G ru
%F MZM_2012_91_6_a2
P. A. Borodin. $2$-Chebyshev Subspaces in the Spaces~$L_1$ and~$C$. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 819-831. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a2/