Lattice Polygons with Two Interior Lattice Points
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 920-933.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lattice point in the plane is a point with integer coordinates. A lattice segment is a line segment whose endpoints are lattice points. A lattice polygon is a simple polygon whose vertices are lattice points. We find all convex lattice polygons in the plane up to equivalence with two interior lattice points.
Keywords: lattice point, lattice polygon, integral unimodular affine transformation.
@article{MZM_2012_91_6_a12,
     author = {Xiang Lin Wei and Ren Ding},
     title = {Lattice {Polygons} with {Two} {Interior} {Lattice} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {920--933},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a12/}
}
TY  - JOUR
AU  - Xiang Lin Wei
AU  - Ren Ding
TI  - Lattice Polygons with Two Interior Lattice Points
JO  - Matematičeskie zametki
PY  - 2012
SP  - 920
EP  - 933
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a12/
LA  - ru
ID  - MZM_2012_91_6_a12
ER  - 
%0 Journal Article
%A Xiang Lin Wei
%A Ren Ding
%T Lattice Polygons with Two Interior Lattice Points
%J Matematičeskie zametki
%D 2012
%P 920-933
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a12/
%G ru
%F MZM_2012_91_6_a12
Xiang Lin Wei; Ren Ding. Lattice Polygons with Two Interior Lattice Points. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 920-933. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a12/

[1] S. Rabinowitz, “On the number of lattice points inside a convex lattice $n$-gon”, Congr. Numer., 73 (1990), 99–124 | MR | Zbl

[2] R. Ding, K. Kołodziejczyk, G. Murphy, J. Reay, “A fast Pick-type approximation for areas of $H$-polygons”, Amer. Math. Monthly, 100:7 (1993), 669–673 | DOI | MR | Zbl

[3] K. Kołodziejczyk, “Hex-triangles with one interior $H$-point”, Ars Combin., 70 (2004), 33–45 | MR | Zbl

[4] R. Ding, J. R. Reay, J. Zhang, “Areas of generalized $H$-polygons”, J. Combin. Theory Ser. A, 77:2 (1997), 304–317 | DOI | MR | Zbl

[5] S. Rabinowitz, “A census of convex lattice polygons with at most one interior lattice point”, Ars Combin., 28 (1989), 83–96 | MR | Zbl

[6] S. Rabinowitz, “Consequences of the pentagon property”, Geombinatorics, 14 (2005), 208–220

[7] P. R. Scott, “On convex lattice polygons”, Bull. Austral. Math. Soc., 15:3 (1976), 395–399 | DOI | MR | Zbl