Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_6_a1, author = {E. R. Avakov and G. G. Magaril-Il'yaev}, title = {An {Implicit-Function} {Theorem} for {Inclusions}}, journal = {Matemati\v{c}eskie zametki}, pages = {813--818}, publisher = {mathdoc}, volume = {91}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a1/} }
E. R. Avakov; G. G. Magaril-Il'yaev. An Implicit-Function Theorem for Inclusions. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 813-818. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a1/
[1] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl
[2] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[3] V. M. Tikhomirov, “Teorema o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie, 7, Izd-vo Mosk. un-ta, M., 1977, 22–30
[4] S. M. Robinson, “Regularity and stability of convex multivalued functions”, Math. Oper. Res., 1:2 (1976), 130–143 | DOI | MR | Zbl
[5] E. H. Chabi, H. Zouaki, “Existence of a continuous solution of parametric nonlinear equation with constraints”, J. Convex Anal., 7:2 (2000), 413–426 | MR | Zbl
[6] A. V. Arutyunov, E. R. Avakov, A. F. Izmailov, “Directional regularity and metric regularity”, SIAM J. Optim., 18:3, 810–833 | MR | Zbl
[7] A. V. Arutyunov, “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 205–215 | MR | Zbl
[8] G. G. Magaril-Ilyaev, V. M. Tikhomirov, “Metod Nyutona, differentsialnye uravneniya i printsip Lagranzha dlya neobkhodimykh uslovii ekstremuma”, Optimalnoe upravlenie, Sbornik statei. K 60-letiyu so dnya rozhdeniya professora Viktora Ivanovicha Blagodatskikh, Tr. MIAN, 262, MAIK, M., 2008, 156–177 | MR | Zbl