On Certain Properties of Rademacher Chaos
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 654-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of Rademacher chaos related to its “lacunarity”. It is proved that Rademacher chaos of arbitrary order $d$ is a $2^{-d}$-uniqueness system as well as a system of strict convergence in the wide (not narrow) sense.
Keywords: Rademacher functions, Walsh functions, Rademacher chaos, lacunary sequence, $\varepsilon$-uniqueness system, system of strict convergence.
@article{MZM_2012_91_5_a1,
     author = {S. V. Astashkin and R. S. Sukhanov},
     title = {On {Certain} {Properties} of {Rademacher} {Chaos}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {654--666},
     publisher = {mathdoc},
     volume = {91},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - R. S. Sukhanov
TI  - On Certain Properties of Rademacher Chaos
JO  - Matematičeskie zametki
PY  - 2012
SP  - 654
EP  - 666
VL  - 91
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a1/
LA  - ru
ID  - MZM_2012_91_5_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A R. S. Sukhanov
%T On Certain Properties of Rademacher Chaos
%J Matematičeskie zametki
%D 2012
%P 654-666
%V 91
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a1/
%G ru
%F MZM_2012_91_5_a1
S. V. Astashkin; R. S. Sukhanov. On Certain Properties of Rademacher Chaos. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 654-666. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a1/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Izd-vo LKI, M., 2008

[2] S. V. Astashkin, “Rademacher chaos in symmetric spaces”, East J. Approx., 4:3 (1998), 311–336 | MR | Zbl

[3] S. V. Astashkin, “Rademacher chaos in symmetric spaces. II”, East J. Approx., 6:1 (2000), 71–86 | MR | Zbl

[4] S. Kwapień, W. A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Probab. Appl., Birkhäuser Boston, Boston, 1992 | MR | Zbl

[5] V. F. Gaposhkin, “Lakunarnye ryady i nezavisimye funktsii”, UMN, 21:6 (1966), 3–82 | MR | Zbl

[6] S. B. Stechkin, P. L. Ulyanov, “O mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 26:2 (1962), 211–222 | MR | Zbl

[7] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[8] J. Coury, “Some results on lacunary Walsh series”, Pacific J. Math., 45:2 (1973), 419–425 | MR | Zbl

[9] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR | Zbl

[10] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980 | MR | Zbl

[11] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[12] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[13] R. Blei, Analysis in Integer and Fractional Dimensions, Cambridge Stud. Adv. Math., 71, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[14] R. Blei, S. Janson, “Rademacher chaos: tail estimates versus limit theorems”, Ark. Mat., 42:1 (2004), 13–29 | MR | Zbl