Reconstruction of Tetrahedra from Sets of Edge Lengths
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 530-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of reconstructing tetrahedra from given sets of edge lengths is studied. This is a special case of the problem of determining, up to isometry, the position of a complete graph in $\mathbb R^3$ from the set of all pairwise distances between its vertices without knowing their distribution over the edges of the graph. This problem arises in the physics of molecular clusters. Traditionally, the problem of minimizing the potential energy of a molecular cluster is reduced to a computationally complex global optimization problem. However, analyzing the solution thus obtained requires the knowledge of whether the congruence of multiedge constructions is preserved under rearrangements of edge lengths.
Mots-clés : tetrahedron
Keywords: set of edge lengths, congruence of tetrahedra, circumscribed sphere.
@article{MZM_2012_91_4_a5,
     author = {N. O. Ermilov},
     title = {Reconstruction of {Tetrahedra} from {Sets} of {Edge} {Lengths}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {530--538},
     year = {2012},
     volume = {91},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a5/}
}
TY  - JOUR
AU  - N. O. Ermilov
TI  - Reconstruction of Tetrahedra from Sets of Edge Lengths
JO  - Matematičeskie zametki
PY  - 2012
SP  - 530
EP  - 538
VL  - 91
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a5/
LA  - ru
ID  - MZM_2012_91_4_a5
ER  - 
%0 Journal Article
%A N. O. Ermilov
%T Reconstruction of Tetrahedra from Sets of Edge Lengths
%J Matematičeskie zametki
%D 2012
%P 530-538
%V 91
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a5/
%G ru
%F MZM_2012_91_4_a5
N. O. Ermilov. Reconstruction of Tetrahedra from Sets of Edge Lengths. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 530-538. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a5/

[1] V. Yu. Protasov, “Izomorfizm grafov i ravenstvo simpleksov”, Matem. zametki, 85:5 (2009), 758–767 | MR | Zbl

[2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1953 | MR | Zbl

[3] I. X. Sabitov, Ob'emy mnogogrannikov, MTsNMO, M., 2002

[4] M. Berzhe, Geometriya, v. 1, Mir, M., 1984 | MR | Zbl