Minimal Graded Resolutions of Reverse Lexsegment Ideals
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 383-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field, and let $S=k[x_1,\dots,x_n]$ be the polynomial ring in $x_1,\dots,x_n$ with coefficients in the field $k$. We study the minimal graded free $S$-resolutions of reverse lexsegment ideals of $S$. We discuss the extremal Betti numbers of initial reverse lexsegment ideals of $S$. Moreover, we analyze all reverse lexsegment ideals with linear resolution.
Keywords: polynomial ring, reverse lexsegment ideal, Betti number, monomial ideals, minimal graded free resolutions.
@article{MZM_2012_91_3_a5,
     author = {M. Crupi and M. La Barbiera},
     title = {Minimal {Graded} {Resolutions} of {Reverse} {Lexsegment} {Ideals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--399},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/}
}
TY  - JOUR
AU  - M. Crupi
AU  - M. La Barbiera
TI  - Minimal Graded Resolutions of Reverse Lexsegment Ideals
JO  - Matematičeskie zametki
PY  - 2012
SP  - 383
EP  - 399
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/
LA  - ru
ID  - MZM_2012_91_3_a5
ER  - 
%0 Journal Article
%A M. Crupi
%A M. La Barbiera
%T Minimal Graded Resolutions of Reverse Lexsegment Ideals
%J Matematičeskie zametki
%D 2012
%P 383-399
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/
%G ru
%F MZM_2012_91_3_a5
M. Crupi; M. La Barbiera. Minimal Graded Resolutions of Reverse Lexsegment Ideals. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 383-399. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/

[1] T. Deery, “Rev-lex segment ideals and minimal Betti numbers”, The Curves Seminar at Queen's, Vol. X, Queen's Papers in Pure and Appl. Math., 102, Queen's Univ., Kingston, ON, 1996, 193–219 | MR | Zbl

[2] D. Bayer, H. Charalambous, S. Popescu, “Extremal Betti numbers and applications to monomial ideals”, J. Algebra, 221:2 (1999), 497–512 | DOI | MR | Zbl

[3] S. Eliahou, M. Kervaire, “Minimal resolutions of some monomial ideals”, J. Algebra, 129:1 (1990), 1–25 | DOI | MR | Zbl

[4] H. Hulett, H. M. Martin, “Betti numbers of lex-segment ideals”, J. Algebra, 275:2 (2004), 629–638 | DOI | MR | Zbl

[5] A. Aramova, E. De Negri, J. Herzog, “Lexsegment ideals with linear resolution”, Illinois J. Math., 42:3 (1998), 509–523 | MR | Zbl

[6] E. De Negri, J. Herzog, “Completely lexsegment ideals”, Proc. Amer. Math. Soc., 126:12 (1998), 3467–3473 | DOI | MR | Zbl

[7] M. Crupi, R. Utano, “Extremal Betti numbers of lexsegment ideals”, Geometric and Combinatorial Aspects of Commutative Algebra, Lecture Notes in Pure and Appl. Math., 217, Dekker, New York, 2001, 159–164 | MR | Zbl

[8] M. Crupi, R. Utano, “Extremal Betti numbers of graded ideals”, Results Math., 43:3-4 (2003), 235–244 | MR | Zbl

[9] M. Krupi, M. La Barbera, “Idealy, porozhdennye obratno-leksikograficheskimi segmentami”, Matem. zametki, 89:1 (2011), 53–69

[10] D. Eisenbud, Commutative Algebra, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl

[11] A. Aramova, J. Herzog, “Almost regular sequences and Betti numbers”, Amer. J. Math., 122:4 (2000), 689–719 | DOI | MR | Zbl