Minimal Graded Resolutions of Reverse Lexsegment Ideals
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 383-399

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field, and let $S=k[x_1,\dots,x_n]$ be the polynomial ring in $x_1,\dots,x_n$ with coefficients in the field $k$. We study the minimal graded free $S$-resolutions of reverse lexsegment ideals of $S$. We discuss the extremal Betti numbers of initial reverse lexsegment ideals of $S$. Moreover, we analyze all reverse lexsegment ideals with linear resolution.
Keywords: polynomial ring, reverse lexsegment ideal, Betti number, monomial ideals, minimal graded free resolutions.
@article{MZM_2012_91_3_a5,
     author = {M. Crupi and M. La Barbiera},
     title = {Minimal {Graded} {Resolutions} of {Reverse} {Lexsegment} {Ideals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--399},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/}
}
TY  - JOUR
AU  - M. Crupi
AU  - M. La Barbiera
TI  - Minimal Graded Resolutions of Reverse Lexsegment Ideals
JO  - Matematičeskie zametki
PY  - 2012
SP  - 383
EP  - 399
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/
LA  - ru
ID  - MZM_2012_91_3_a5
ER  - 
%0 Journal Article
%A M. Crupi
%A M. La Barbiera
%T Minimal Graded Resolutions of Reverse Lexsegment Ideals
%J Matematičeskie zametki
%D 2012
%P 383-399
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/
%G ru
%F MZM_2012_91_3_a5
M. Crupi; M. La Barbiera. Minimal Graded Resolutions of Reverse Lexsegment Ideals. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 383-399. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a5/