The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 371-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of trigonometric sums, Sidelnikov obtained estimates of the frequencies of occurrence of elements on segments of linear recurrence sequences over finite fields. These results are generalized to the case of Galois rings. It is shown that, in some cases, the estimates obtained in this paper are sharper than previously known ones.
Keywords: linear recurrence sequence, Galois ring, method of trigonometric sums, irreducible polynomial.
Mots-clés : Galois polynomial
@article{MZM_2012_91_3_a4,
     author = {O. V. Kamlovskii},
     title = {The {Sidelnikov} {Method} for {Estimating} the {Number} of {Signs} on {Segments} of {Linear} {Recurrence} {Sequences} over {Galois} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--382},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings
JO  - Matematičeskie zametki
PY  - 2012
SP  - 371
EP  - 382
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/
LA  - ru
ID  - MZM_2012_91_3_a4
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings
%J Matematičeskie zametki
%D 2012
%P 371-382
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/
%G ru
%F MZM_2012_91_3_a4
O. V. Kamlovskii. The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 371-382. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/

[1] A. S. Kuzmin, V. L. Kurakin, A. A. Nechaev, “Psevdosluchainye i polilineinye posledovatelnosti”, Tr. po diskr. matem., 1, TVP, M., 1997, 139–202 | MR | Zbl

[2] A. P. Alferov, A. Yu. Zubov, A. S. Kuzmin, A. V. Cheremushkin, Osnovy kriptografii, Uchebnoe posobie, Gelios ARV, M., 2001

[3] D. Knut, Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, Mir, M., 2000 | MR | Zbl

[4] A. Kuzmin, A. Nechaev, “Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring”, Discrete Appl. Math., 111:1-2 (2001), 117–137 | DOI | MR | Zbl

[5] R. J. McEliece, “Irreducible cyclic codes and Gauss sums”, Combinatorics. Part 1: Theory of Designs, Finite Geometry and Coding Theory, Math. Centre Tracts, 55, Math. Centrum, Amsterdam, 1974, 179–196 | MR | Zbl

[6] V. M. Sidelnikov, “Otsenki dlya chisla poyavlenii znakov na otrezke rekurrentnoi posledovatelnosti nad konechnym polem”, Diskret. matem., 3:2 (1991), 87–95 | MR | Zbl

[7] O. V. Kamlovskii, A. S. Kuzmin, “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundament. i prikl. matem., 6:4 (2000), 1083–1094 | MR | Zbl

[8] O. V. Kamlovskii, “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sb., 200:4 (2009), 31–52 | MR | Zbl

[9] N. M. Korobov, “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Dokl. AN SSSR, 88:4 (1953), 603–606 | MR | Zbl

[10] V. I. Nechaev, “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Analiticheskaya teoriya chisel i prilozheniya, Sbornik statei. K 60-letiyu so dnya rozhdeniya professora Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 218, Nauka, M., 1997, 335–342 | MR | Zbl

[11] H. Niederreiter, “Distribution properties of feedback shift register sequences”, Problems Control Inform. Theory, 15:1 (1986), 19–34 | MR | Zbl

[12] P. Solé, D. Zinoviev, “The most significant bit of maximum-length sequences over $\mathbb Z_{2^l}$: autocorrelation and imbalance”, IEEE Trans. Inform. Theory, 50:8 (2004), 1844–1846 | DOI | MR

[13] S. Fan, W. Han, “Random properties of the highest level sequences of primitive sequences over $\mathbb Z_{2^l}$”, IEEE Trans. Inform. Theory, 49:6 (2003), 1553–1557 | DOI | MR | Zbl

[14] H. Hu, D. Feng, W. Wu, “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inform. Theory, 52:5 (2006), 2260–2265 | DOI | MR