Mots-clés : Galois polynomial
@article{MZM_2012_91_3_a4,
author = {O. V. Kamlovskii},
title = {The {Sidelnikov} {Method} for {Estimating} the {Number} of {Signs} on {Segments} of {Linear} {Recurrence} {Sequences} over {Galois} {Rings}},
journal = {Matemati\v{c}eskie zametki},
pages = {371--382},
year = {2012},
volume = {91},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/}
}
TY - JOUR AU - O. V. Kamlovskii TI - The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings JO - Matematičeskie zametki PY - 2012 SP - 371 EP - 382 VL - 91 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/ LA - ru ID - MZM_2012_91_3_a4 ER -
O. V. Kamlovskii. The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 371-382. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a4/
[1] A. S. Kuzmin, V. L. Kurakin, A. A. Nechaev, “Psevdosluchainye i polilineinye posledovatelnosti”, Tr. po diskr. matem., 1, TVP, M., 1997, 139–202 | MR | Zbl
[2] A. P. Alferov, A. Yu. Zubov, A. S. Kuzmin, A. V. Cheremushkin, Osnovy kriptografii, Uchebnoe posobie, Gelios ARV, M., 2001
[3] D. Knut, Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, Mir, M., 2000 | MR | Zbl
[4] A. Kuzmin, A. Nechaev, “Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring”, Discrete Appl. Math., 111:1-2 (2001), 117–137 | DOI | MR | Zbl
[5] R. J. McEliece, “Irreducible cyclic codes and Gauss sums”, Combinatorics. Part 1: Theory of Designs, Finite Geometry and Coding Theory, Math. Centre Tracts, 55, Math. Centrum, Amsterdam, 1974, 179–196 | MR | Zbl
[6] V. M. Sidelnikov, “Otsenki dlya chisla poyavlenii znakov na otrezke rekurrentnoi posledovatelnosti nad konechnym polem”, Diskret. matem., 3:2 (1991), 87–95 | MR | Zbl
[7] O. V. Kamlovskii, A. S. Kuzmin, “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundament. i prikl. matem., 6:4 (2000), 1083–1094 | MR | Zbl
[8] O. V. Kamlovskii, “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sb., 200:4 (2009), 31–52 | MR | Zbl
[9] N. M. Korobov, “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Dokl. AN SSSR, 88:4 (1953), 603–606 | MR | Zbl
[10] V. I. Nechaev, “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Analiticheskaya teoriya chisel i prilozheniya, Sbornik statei. K 60-letiyu so dnya rozhdeniya professora Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 218, Nauka, M., 1997, 335–342 | MR | Zbl
[11] H. Niederreiter, “Distribution properties of feedback shift register sequences”, Problems Control Inform. Theory, 15:1 (1986), 19–34 | MR | Zbl
[12] P. Solé, D. Zinoviev, “The most significant bit of maximum-length sequences over $\mathbb Z_{2^l}$: autocorrelation and imbalance”, IEEE Trans. Inform. Theory, 50:8 (2004), 1844–1846 | DOI | MR
[13] S. Fan, W. Han, “Random properties of the highest level sequences of primitive sequences over $\mathbb Z_{2^l}$”, IEEE Trans. Inform. Theory, 49:6 (2003), 1553–1557 | DOI | MR | Zbl
[14] H. Hu, D. Feng, W. Wu, “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inform. Theory, 52:5 (2006), 2260–2265 | DOI | MR