Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 163-171
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct here an example of a continuous convex function on a locally convex space, which is $\mathrm{MS}$-differentiable at a point, but is not $\mathrm{HL}$-differentiable at this point.
Keywords:
topological vector space, convex function, $\mathrm{MS}$-differentiability, $\mathrm{HL}$-differentiability, Fréchet differentiability, balanced absorbing subset, Minkowski function.
@article{MZM_2012_91_2_a0,
author = {V. I. Averbukh and T. Konderla},
title = {Continuous {Convex} $\mathrm{MS}${-Differentiable} {Function} {Need} not {Be} $\mathrm{HL}${-Differentiable}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--171},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/}
}
TY - JOUR
AU - V. I. Averbukh
AU - T. Konderla
TI - Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable
JO - Matematičeskie zametki
PY - 2012
SP - 163
EP - 171
VL - 91
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/
LA - ru
ID - MZM_2012_91_2_a0
ER -
V. I. Averbukh; T. Konderla. Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/