Mots-clés : Fréchet differentiability
@article{MZM_2012_91_2_a0,
author = {V. I. Averbukh and T. Konderla},
title = {Continuous {Convex} $\mathrm{MS}${-Differentiable} {Function} {Need} not {Be} $\mathrm{HL}${-Differentiable}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--171},
year = {2012},
volume = {91},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/}
}
TY - JOUR
AU - V. I. Averbukh
AU - T. Konderla
TI - Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable
JO - Matematičeskie zametki
PY - 2012
SP - 163
EP - 171
VL - 91
IS - 2
UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/
LA - ru
ID - MZM_2012_91_2_a0
ER -
V. I. Averbukh; T. Konderla. Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/
[1] V. I. Averbukh, O. G. Smolyanov, “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl
[2] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl
[3] V. I. Averbukh, “Gâteaux differentiable convex functions are Michal–Bastiani differentiable”, Convergence Structures and Aplications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1979, no. 4, Akademie-Verlag, Berlin, 1980, 7–9 | MR | Zbl
[4] J. M. Borwein, M. Fabián, “On convex functions having points of Gâteaux differentiability which are not points of Fréchet differentiability”, Canad. J. Math., 45:6 (1993), 1121–1134 | DOI | MR | Zbl
[5] N. Bourbaki, Topological Vector Spaces, Chapt. 1–5, Elem. Math. (Berlin), Springer-Verlag, Berlin, 1987 | MR | Zbl
[6] J. R. Giles, Convex Analysis with Application in the Differetiation of Convex Functions, Res. Notes in Math., 58, Pitman, Boston, MA, 1982 | MR | Zbl