Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_2_a0, author = {V. I. Averbukh and T. Konderla}, title = {Continuous {Convex} $\mathrm{MS}${-Differentiable} {Function} {Need} not {Be} $\mathrm{HL}${-Differentiable}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--171}, publisher = {mathdoc}, volume = {91}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/} }
TY - JOUR AU - V. I. Averbukh AU - T. Konderla TI - Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable JO - Matematičeskie zametki PY - 2012 SP - 163 EP - 171 VL - 91 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/ LA - ru ID - MZM_2012_91_2_a0 ER -
V. I. Averbukh; T. Konderla. Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/
[1] V. I. Averbukh, O. G. Smolyanov, “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl
[2] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl
[3] V. I. Averbukh, “Gâteaux differentiable convex functions are Michal–Bastiani differentiable”, Convergence Structures and Aplications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1979, no. 4, Akademie-Verlag, Berlin, 1980, 7–9 | MR | Zbl
[4] J. M. Borwein, M. Fabián, “On convex functions having points of Gâteaux differentiability which are not points of Fréchet differentiability”, Canad. J. Math., 45:6 (1993), 1121–1134 | DOI | MR | Zbl
[5] N. Bourbaki, Topological Vector Spaces, Chapt. 1–5, Elem. Math. (Berlin), Springer-Verlag, Berlin, 1987 | MR | Zbl
[6] J. R. Giles, Convex Analysis with Application in the Differetiation of Convex Functions, Res. Notes in Math., 58, Pitman, Boston, MA, 1982 | MR | Zbl