Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 163-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct here an example of a continuous convex function on a locally convex space, which is $\mathrm{MS}$-differentiable at a point, but is not $\mathrm{HL}$-differentiable at this point.
Keywords: topological vector space, convex function, $\mathrm{MS}$-differentiability, $\mathrm{HL}$-differentiability, Fréchet differentiability, balanced absorbing subset, Minkowski function.
@article{MZM_2012_91_2_a0,
     author = {V. I. Averbukh and T. Konderla},
     title = {Continuous {Convex} $\mathrm{MS}${-Differentiable} {Function} {Need} not {Be} $\mathrm{HL}${-Differentiable}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/}
}
TY  - JOUR
AU  - V. I. Averbukh
AU  - T. Konderla
TI  - Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable
JO  - Matematičeskie zametki
PY  - 2012
SP  - 163
EP  - 171
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/
LA  - ru
ID  - MZM_2012_91_2_a0
ER  - 
%0 Journal Article
%A V. I. Averbukh
%A T. Konderla
%T Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable
%J Matematičeskie zametki
%D 2012
%P 163-171
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/
%G ru
%F MZM_2012_91_2_a0
V. I. Averbukh; T. Konderla. Continuous Convex $\mathrm{MS}$-Differentiable Function Need not Be $\mathrm{HL}$-Differentiable. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a0/

[1] V. I. Averbukh, O. G. Smolyanov, “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl

[2] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl

[3] V. I. Averbukh, “Gâteaux differentiable convex functions are Michal–Bastiani differentiable”, Convergence Structures and Aplications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1979, no. 4, Akademie-Verlag, Berlin, 1980, 7–9 | MR | Zbl

[4] J. M. Borwein, M. Fabián, “On convex functions having points of Gâteaux differentiability which are not points of Fréchet differentiability”, Canad. J. Math., 45:6 (1993), 1121–1134 | DOI | MR | Zbl

[5] N. Bourbaki, Topological Vector Spaces, Chapt. 1–5, Elem. Math. (Berlin), Springer-Verlag, Berlin, 1987 | MR | Zbl

[6] J. R. Giles, Convex Analysis with Application in the Differetiation of Convex Functions, Res. Notes in Math., 58, Pitman, Boston, MA, 1982 | MR | Zbl