On the Geometry of Normal Locally Conformal Almost Cosymplectic Manifolds
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 40-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Normal locally conformal almost cosymplectic structures (or $lc\mathscr{AC_{S}}$-structures) are considered. A full set of structure equations is obtained, and the components of the Riemannian curvature tensor and the Ricci tensor are calculated. Necessary and sufficient conditions for the constancy of the curvature of such manifolds are found. In particular, it is shown that a normal $lc\mathscr{AC_{S}}$-manifold which is a spatial form has nonpositive curvature. The constancy of $\Phi HS$-curvature is studied. Expressions for the components of the Weyl tensor on the space of the associated $G$-structure are obtained. Necessary and sufficient conditions for a normal $lc\mathscr{AC_{S}}$-manifold to coincide with the conformal plane are found. Finally, locally symmetric normal $lc\mathscr{AC_{S}}$-manifolds are considered.
Keywords: normal locally conformal almost cosymplectic structure, Riemannian curvature tensor, Ricci tensor, Weyl tensor, algebra of smooth structures, module of smooth vector fields, contact form.
Mots-clés : $G$-structure, conformal plane
@article{MZM_2012_91_1_a3,
     author = {V. F. Kirichenko and S. V. Kharitonova},
     title = {On the {Geometry} of {Normal} {Locally} {Conformal} {Almost} {Cosymplectic} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {40--53},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - S. V. Kharitonova
TI  - On the Geometry of Normal Locally Conformal Almost Cosymplectic Manifolds
JO  - Matematičeskie zametki
PY  - 2012
SP  - 40
EP  - 53
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a3/
LA  - ru
ID  - MZM_2012_91_1_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A S. V. Kharitonova
%T On the Geometry of Normal Locally Conformal Almost Cosymplectic Manifolds
%J Matematičeskie zametki
%D 2012
%P 40-53
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a3/
%G ru
%F MZM_2012_91_1_a3
V. F. Kirichenko; S. V. Kharitonova. On the Geometry of Normal Locally Conformal Almost Cosymplectic Manifolds. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 40-53. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a3/

[1] Z. Olszak, “Locally conformal almost cosymplectic manifolds”, Colloq. math., 57:1 (1989), 73–87 | MR | Zbl

[2] Z. Olszak, R. Roşca, “Normal locally conformal almost cosymplectic manifolds”, Publ. Math. Debrecen, 39:3-4 (1991), 315–323 | MR | Zbl

[3] D. Chinea, J. C. Marrero, “Conformal changes of almost cosymplectic manifolds”, Demonstratio Math., 25:3 (1992), 641–656 | MR | Zbl

[4] S. I. Goldberg, “Totally geodesic hypersurfaces of Kaehler manifolds”, Pacific J. Math., 27:2 (1968), 275–281 | MR | Zbl

[5] S. I. Goldberg, K. Yano, “Integrability of almost cosymplectic structures”, Pacific J. Math., 31:2 (1969), 373–382 | MR | Zbl

[6] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[7] S. Sasaki, Y. Hatakeyama, “On differentiable manifolds with certain structures which are closely related to almost contact structure. II”, Tôhoku Math. J. (2), 13 (1961), 281–294 | MR | Zbl

[8] D. E. Blair, “The theory of quasi-Sasakian structures”, J. Differential Geometry, 1 (1967), 331–345 | MR | Zbl

[9] V. F. Kirichenko, N. S. Baklashova, “Geometriya kontaktnoi formy Li i kontaktnyi analog teoremy Ikuty”, Matem. zametki, 82:3 (2007), 347–360 | MR | Zbl

[10] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl

[11] R. Bishop, R. Dzh. Krittenden, Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[12] E. Kartan, Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960 | MR | Zbl

[13] V. F. Kirichenko, “O geometrii mnogoobrazii Kenmotsu”, Dokl. RAN, 380:5 (2001), 585–587 | MR | Zbl

[14] S. V. Umnova, O tochechnom postoyanstve $\Phi$-golomorfnoi sektsionnoi krivizny mnogoobrazii Kenmotsu, MPGU, M., 2002; Деп. в ВИНИТИ 21.03.02, No 514-В2002

[15] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[16] V. F. Kirichenko, “Generalized quasi-Kaehlerian manifolds and axioms of CR-submanifolds in generalized Hermitian geometry. I”, Geom. Dedicata, 51:1 (1994), 75–104 | DOI | MR | Zbl

[17] I. Ishihara, “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2:2 (1976), 171–186 | DOI | MR | Zbl

[18] A. Besse, Mnogoobraziya Einshteina, v. 1, 2, Mir, M., 1990 | MR | Zbl

[19] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, Nauka, M., 1976 | MR | Zbl

[20] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR | Zbl