A Tree Labeling Problem with an Application to Optimal Approximation of Continuous Functions
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 24-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We state a tree labeling problem, give an algorithm for solving it, and discuss some complexity characteristics of the algorithm. Furthermore, we discuss applications of these results to the approximation of a continuous function with given accuracy by linear combinations of characteristic functions of dyadic intervals with as few summands as possible. We also touch upon issues concerning tree-aided signal discretization.
Keywords: trees labeling, complexity, function approximation, $n$-term approximation, signal discretization.
@article{MZM_2012_91_1_a2,
     author = {V. V. Galatenko},
     title = {A {Tree} {Labeling} {Problem} with an {Application} to {Optimal} {Approximation} of {Continuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {24--39},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a2/}
}
TY  - JOUR
AU  - V. V. Galatenko
TI  - A Tree Labeling Problem with an Application to Optimal Approximation of Continuous Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 24
EP  - 39
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a2/
LA  - ru
ID  - MZM_2012_91_1_a2
ER  - 
%0 Journal Article
%A V. V. Galatenko
%T A Tree Labeling Problem with an Application to Optimal Approximation of Continuous Functions
%J Matematičeskie zametki
%D 2012
%P 24-39
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a2/
%G ru
%F MZM_2012_91_1_a2
V. V. Galatenko. A Tree Labeling Problem with an Application to Optimal Approximation of Continuous Functions. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 24-39. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a2/

[1] O. Ore, Teoriya grafov, Nauka, M., 1980 | MR | Zbl

[2] A. V. Akho, Dzh. E. Khopkroft, Dzh. D. Ulman, Struktury dannykh i algoritmy, Izdatelskii dom “Vilyams”, M., 2007

[3] R. A. DeVore, “Nonlinear Approximation”, Acta Numer., 7 (1998), 51–150 | DOI | MR | Zbl

[4] V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[5] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[6] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[7] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS, Addison-Wesley Publ., Reading, MA, 1990

[8] P. Binev, R. DeVore, “Fast computation in adaptive tree approximation”, Numer. Math., 97:2 (2004), 193–217 | DOI | MR | Zbl

[9] M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Implementation, Morgan Kauffman Publ., San Francisco, CA, 2004

[10] W. Hunt, W. R. Mark, G. Stoll, “Fast kd-tree construction with an adaptive error-bounded heuristic”, 2006 IEEE Symposium on Interactive Ray Tracing, Salt Lake City, UT, 2006, 81–88