Total Population Size in Critical Branching Processes in a Random Environment
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 12-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a critical branching process evolving in a random environment and having geometric distributions of offspring sizes, we study the tail behavior of the distributions of the total size of the population and the maximal number of particles in a generation up to the moment of extinction of the process.
Keywords: branching processes in random environment, offspring number, population size, generating function, random walk, Lévy process.
Mots-clés : tail distribution
@article{MZM_2012_91_1_a1,
     author = {V. A. Vatutin},
     title = {Total {Population} {Size} in {Critical} {Branching} {Processes} in a {Random} {Environment}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {12--23},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - Total Population Size in Critical Branching Processes in a Random Environment
JO  - Matematičeskie zametki
PY  - 2012
SP  - 12
EP  - 23
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a1/
LA  - ru
ID  - MZM_2012_91_1_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T Total Population Size in Critical Branching Processes in a Random Environment
%J Matematičeskie zametki
%D 2012
%P 12-23
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a1/
%G ru
%F MZM_2012_91_1_a1
V. A. Vatutin. Total Population Size in Critical Branching Processes in a Random Environment. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a1/

[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] V. A. Vatutin, V. Vakhtel, “Vnezapnoe vyrozhdenie kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, TVP, 54:3 (2009), 417–438 | MR | Zbl

[3] V. A. Vatutin, E. E. Dyakonova, “Kriticheskie vetvyaschiesya protsessy v sluchainoi srede: veroyatnosti vyrozhdeniya v fiksirovannyi moment”, Diskret. matem., 9:4 (1997), 100–126 | MR | Zbl

[4] V. M. Zolotarev, “Preobrazovanie Mellina–Stiltesa v teorii veroyatnostei”, TVP, 2:4 (1957), 444–469 | MR | Zbl

[5] R. A. Doney, “Conditional limit theorems for asymptically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70:3 (1985), 351–360 | DOI | MR | Zbl

[6] R. Durrett, “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl

[7] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[8] V. I. Afanasev, “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matem., 11:2 (1999), 86–102 | MR | Zbl

[9] V. A. Vatutin, E. E. Dyakonova, “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, TVP, 51:1 (2006), 22–46 | MR | Zbl

[10] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl

[11] A. Agresti, “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12:1 (1975), 39–46 | DOI | MR | Zbl