Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_1_a1, author = {V. A. Vatutin}, title = {Total {Population} {Size} in {Critical} {Branching} {Processes} in a {Random} {Environment}}, journal = {Matemati\v{c}eskie zametki}, pages = {12--23}, publisher = {mathdoc}, volume = {91}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a1/} }
V. A. Vatutin. Total Population Size in Critical Branching Processes in a Random Environment. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a1/
[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] V. A. Vatutin, V. Vakhtel, “Vnezapnoe vyrozhdenie kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, TVP, 54:3 (2009), 417–438 | MR | Zbl
[3] V. A. Vatutin, E. E. Dyakonova, “Kriticheskie vetvyaschiesya protsessy v sluchainoi srede: veroyatnosti vyrozhdeniya v fiksirovannyi moment”, Diskret. matem., 9:4 (1997), 100–126 | MR | Zbl
[4] V. M. Zolotarev, “Preobrazovanie Mellina–Stiltesa v teorii veroyatnostei”, TVP, 2:4 (1957), 444–469 | MR | Zbl
[5] R. A. Doney, “Conditional limit theorems for asymptically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70:3 (1985), 351–360 | DOI | MR | Zbl
[6] R. Durrett, “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl
[7] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[8] V. I. Afanasev, “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matem., 11:2 (1999), 86–102 | MR | Zbl
[9] V. A. Vatutin, E. E. Dyakonova, “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, TVP, 51:1 (2006), 22–46 | MR | Zbl
[10] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl
[11] A. Agresti, “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12:1 (1975), 39–46 | DOI | MR | Zbl