A Generalization of the Curtiss Theorem for Moment Generating Functions
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 947-952 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Curtiss theorem deals with the relation between the weak convergence of probability measures on the line and the convergence of their moment generating functions in a neighborhood of zero. We present a multidimensional generalization of this result. To this end, we consider arbitrary $\sigma$-finite measures whose moment generating functions exist in a domain of multidimensional Euclidean space not necessarily containing zero. We also prove the corresponding converse statement.
Keywords: probability measure, moment generating function, Curtiss theorem, $\sigma$-finite measure, analytic function. Radon–Nykodym derivative.
@article{MZM_2011_90_6_a9,
     author = {A. L. Yakymiv},
     title = {A {Generalization} of the {Curtiss} {Theorem} for {Moment} {Generating} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {947--952},
     year = {2011},
     volume = {90},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a9/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - A Generalization of the Curtiss Theorem for Moment Generating Functions
JO  - Matematičeskie zametki
PY  - 2011
SP  - 947
EP  - 952
VL  - 90
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a9/
LA  - ru
ID  - MZM_2011_90_6_a9
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T A Generalization of the Curtiss Theorem for Moment Generating Functions
%J Matematičeskie zametki
%D 2011
%P 947-952
%V 90
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a9/
%G ru
%F MZM_2011_90_6_a9
A. L. Yakymiv. A Generalization of the Curtiss Theorem for Moment Generating Functions. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 947-952. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a9/

[1] J. H. Curtiss, “A note on the theory of moment generating functions”, Ann. Math. Statist., 13:4 (1942), 430–433 | DOI | MR | Zbl

[2] V. N. Sachkov, Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978 | MR | Zbl

[3] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[4] A. L. Yakymiv, Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, M., 2005 | MR | Zbl

[5] A. Mukherjea, M. Rao, S. Suen, “A note on moment generating functions”, Statist. Probab. Lett., 76:11 (2006), 1185–1189 | DOI | MR | Zbl

[6] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | MR | Zbl

[7] A. L. Yakymiv, “Predelnaya teorema dlya logarifma poryadka sluchainoi $A$-podstanovki”, Diskret. matem., 22:1 (2010), 126–149 | MR | Zbl

[8] Varadarain, “Mery na topologicheskikh prostranstvakh”, Matem. sb., 55:1 (1961), 35–100 | MR | Zbl

[9] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | Zbl

[10] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. 2: Funktsii neskolkikh peremennykh, Nauka, M., 1976 | MR | Zbl