Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 875-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents conditions on the coefficients of the equations \begin{align*} -(p(f'-rf))'-\overline{r}p(f'-rf)+qf=0, \\ -(P(f'-Rf))'-\overline{R}P(f'-Rf)+Qf=0, \end{align*} where $1/p$, $1/P$, $q$, $Q$, $r$, $R\in\mathcal{L}^1_{\mathrm{loc}(\mathbb{R}_+)}$, $p$, $P$, $q$, and $Q$ are real-valued functions, while $r$ and $R$ are complex-valued functions, as well as on the fundamental system of solutions of the second equation, which ensure the asymptotic proximity of the solutions of these equations. The results obtained are applied to the study of the spectral properties of the differential operator generated by the expression $$ -y''+ \sum_{k=0}^{+\infty}h_k\delta(x-x_k)y,\qquad x_k \in \mathbb{R}_+,\quad h_k \in R, $$ in the space $\mathcal{L}^2(\mathbb{R}_+)$. In particular, we obtain conditions on $h_k$$x_k$ under which the limit-disk case is realized for this operator.
Keywords: second-order quasidifferential equation, quasiderivative, asymptotic proximity of functions, Liouville–Green asymptotic formulas, deficiency index of an operator, Sturm–Liouville operator.
@article{MZM_2011_90_6_a5,
     author = {N. N. Konechnaja},
     title = {Asymptotic {Integration} of {Symmetric} {Second-Order} {Quasidifferential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {875--884},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a5/}
}
TY  - JOUR
AU  - N. N. Konechnaja
TI  - Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 875
EP  - 884
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a5/
LA  - ru
ID  - MZM_2011_90_6_a5
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%T Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations
%J Matematičeskie zametki
%D 2011
%P 875-884
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a5/
%G ru
%F MZM_2011_90_6_a5
N. N. Konechnaja. Asymptotic Integration of Symmetric Second-Order Quasidifferential Equations. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 875-884. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a5/

[1] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, Izd-vo Mosk. un-ta, M., 2003, 159–212 | MR | Zbl

[2] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[3] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, London Math. Soc. Monogr. (N.S.), 4, Clarendon Press, Oxford, 1989 | MR | Zbl

[4] H. Weyl, “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen”, Math. Ann., 68:2 (1910), 220–269 | DOI | MR | Zbl

[5] W. N. Everitt, A. Zettl, “Generalized symmetric ordinary differential expressions I: The general theory”, Nieuw Arch. Wisk. (3), 27:3 (1979), 363–397 | MR | Zbl

[6] W. N. Everitt, L. Marcus, Boundary Value Problems and Symplectic Algebra for Ordinary Diffrrential and Quasi-Differential Operators, Math. Surveys Monogr., 61, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[7] K. A. Mirzoev, “Funktsiya Koshi i $\mathscr{L}^p_w$-svoistva reshenii kvazidifferentsialnykh uravnenii”, UMN, 46:4 (1991), 161–162 | MR | Zbl

[8] A. Kostenko, M. Malamud, 1-D Schrödinger Operators with Local Interactions on a Discrete Set, 2009, arXiv: math.SP/0908.3542v1