Inheritance Principle in Dynamical Systems
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 860-874.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an “inheritance principle” according to which local properties are inherited by the global shift mapping. The principle is based on the notions of roughness and semigroup. When analyzing general competition models, key inherited properties (sign-invariant structures etc.) are determined. This approach is used to prove the global stability of periodic modes in a number of nonlinear nonautonomous ecological models.
Keywords: roughness, inheritance, stability, global shift mapping, Poincaré period map, dynamics of interaction of $n$ competitors, dynamics of ecological communities.
Mots-clés : Hadamard's lemma, sign-invariant structure
@article{MZM_2011_90_6_a4,
     author = {V. G. Ilichev},
     title = {Inheritance {Principle} in {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {860--874},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a4/}
}
TY  - JOUR
AU  - V. G. Ilichev
TI  - Inheritance Principle in Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2011
SP  - 860
EP  - 874
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a4/
LA  - ru
ID  - MZM_2011_90_6_a4
ER  - 
%0 Journal Article
%A V. G. Ilichev
%T Inheritance Principle in Dynamical Systems
%J Matematičeskie zametki
%D 2011
%P 860-874
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a4/
%G ru
%F MZM_2011_90_6_a4
V. G. Ilichev. Inheritance Principle in Dynamical Systems. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 860-874. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a4/

[1] V. G. Ilichev, “Lokalnye i globalnye svoistva neavtonomnykh dinamicheskikh sistem i ikh prilozhenie v modelyakh konkurentsii”, Sib. matem. zhurn., 44:3 (2003), 622–635 | MR | Zbl

[2] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR | Zbl

[3] V. G. Ilichev, “Nasleduemye svoistva neavtonomnykh dinamicheskikh sistem i ikh prilozhenie v modelyakh konkurentsii”, Izv. vuzov. Matem., 2002, no. 6, 26–36 | MR | Zbl

[4] F. S. Roberts, Diskretnye matematicheskie modeli s prilozheniyami k sotsialnym biologicheskim i ekologicheskim zadacham, Teoriya i metody sistemnogo analiza, Nauka, M., 1986 | MR | Zbl

[5] V. G. Ilichev, O. A. Ilicheva, “Znak-invariantnye struktury matrits i diskretnye modeli”, Diskret. matem., 11:4 (1999), 89–100 | MR | Zbl

[6] P. P. Zabreiko, M. A. Krasnoselskii, Geometricheskie metody nelineinogo analiza. Nelineinyi analiz i ego prilozheniya, Nauka, M., 1975 | MR | Zbl

[7] R. S. Ushatinskaya, Skrytaya zhizn i anabioz, Nauka, M., 1990

[8] V. G. Ilichev, “Universalnye konstanty zapasa i kriterii otbora v peremennoi srede”, Matem. zametki, 70:5 (2001), 691–704 | MR | Zbl