Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 744-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain explicit constructions for rational approximations to the numbers $\ln(b)-\psi(a+1)$, where $\psi$ defines the logarithmic derivative of the Euler gamma function. We prove formulas expressing the numerators and the denominators of the approximations in terms of hypergeometric sums. This generalizes the Aptekarev construction of rational approximations for the Euler constant $\gamma$. As a consequence, we obtain rational approximations for the numbers $\pi/2\pm\gamma$. The proposed construction is compared with with rational Rivoal approximations for the numbers $\gamma+\ln(b)$. We verify assumptions put forward by Rivoal on the denominators of rational approximations to the numbers $\gamma+\ln(b)$ and on the general denominators of simultaneous approximations to the numbers $\gamma$ and $\zeta(2)-\gamma^2$.
Keywords: digamma function, Euler gamma function, rational approximation to a number, Rivoal approximation, hypergeometric sum
Mots-clés : Aptekarev approximation, Laguerre polynomial, Euler constant.
@article{MZM_2011_90_5_a9,
     author = {T. Hessami Pilehrood and Kh. Hessami Pilehrood},
     title = {Rational {Approximations} to {Values} of the {Digamma} {Function} and a {Conjecture} on {Denominators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {744--763},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a9/}
}
TY  - JOUR
AU  - T. Hessami Pilehrood
AU  - Kh. Hessami Pilehrood
TI  - Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators
JO  - Matematičeskie zametki
PY  - 2011
SP  - 744
EP  - 763
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a9/
LA  - ru
ID  - MZM_2011_90_5_a9
ER  - 
%0 Journal Article
%A T. Hessami Pilehrood
%A Kh. Hessami Pilehrood
%T Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators
%J Matematičeskie zametki
%D 2011
%P 744-763
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a9/
%G ru
%F MZM_2011_90_5_a9
T. Hessami Pilehrood; Kh. Hessami Pilehrood. Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 744-763. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a9/

[2] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[3] Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, ed. A. I. Aptekarev, MIAN, M., 2007

[4] D. N. Tulyakov, “Sistema rekurrentnykh sootnoshenii dlya ratsionalnykh approksimatsiii postoyannoi Eilera”, Matem. zametki, 85:5 (2009), 782–787 | MR | Zbl

[5] M. Petkovšek, H. Wilf, D. Zeilberger, $A=B$, A. K. Peters, Wellesley, MA, 1996 | MR | Zbl

[6] M. Apagodu, D. Zeilberger, “Multi-variable Zeilberger and Almkvist–Zeilberger algorithms and the sharpening of Wilf–Zeilberger theory”, Adv. in Appl. Math., 37:2 (2006), 139–152 | DOI | MR | Zbl

[7] T. Rivoal, “Rational approximations for values of derivatives of the Gamma function”, Trans. Amer. Math. Soc., 361:11 (2009), 6115–6149 | DOI | MR | Zbl

[8] T. Rivoal, “Approximations rationnelles des valeurs de la fonction gamma aux rationnels”, J. Number Theory, 130:4 (2010), 944–955 | MR | Zbl

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1965 | MR | Zbl

[10] A. I. Aptekarev, V. G. Lysov, “Asimptotika $\gamma$-form, generiruemykh sovmestno ortogonalnymi mnogochlenami”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 55–62 | DOI

[11] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[12] M. Prévost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Padé approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR | Zbl

[13] G. V. Chudnovsky, “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2 (1983), 325–382 | DOI | MR | Zbl