Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 689-702.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following the terminology introduced by V. V. Trofimov and A. T. Fomenko, we say that a self-adjoint operator $\phi\colon \mathfrak{g}^* \to \mathfrak{g}$ is sectional if it satisfies the identity $\operatorname{ad}^{*}_{\phi x}a=\operatorname{ad}^{*}_{\beta}x$, $x\in \mathfrak{g}^*$, where $\mathfrak{g}$ is a finite-dimensional Lie algebra and $a\in \mathfrak{g}^*$ and $\beta \in \mathfrak{g}$ are fixed elements. In the case of a semisimple Lie algebra $\mathfrak{g}$, the above identity takes the form $[\phi x,a]=[\beta,x]$ and naturally arises in the theory of integrable systems and differential geometry (namely, in the dynamics of $n$-dimensional rigid bodies, the argument shift method, and the classification of projectively equivalent Riemannian metrics). This paper studies general properties of sectional operators, in particular, integrability and the bi-Hamiltonian property for the corresponding Euler equation $\dot x=\operatorname{ad}^*_{\phi x} x$.
Keywords: sectional operator, integrable Euler equation, bi-Hamiltonian Euler equation, finite-dimensional Lie algebra, Frobenius Lie algebra, semi-simple Lie algebra.
Mots-clés : coadjoint representation, Poisson bracket
@article{MZM_2011_90_5_a4,
     author = {A. V. Bolsinov and A. Yu. Konyaev},
     title = {{\CYRA}{\cyrl}{\cyrg}{\cyre}{\cyrb}{\cyrr}{\cyra}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyre} {\cyri} {\cyrg}{\cyre}{\cyro}{\cyrm}{\cyre}{\cyrt}{\cyrr}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyre} {\cyrs}{\cyrv}{\cyro}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyra} {\cyrk}{\cyrv}{\cyra}{\cyrd}{\cyrr}{\cyra}{\cyrt}{\cyri}{\cyrch}{\cyrn}{\cyrery}{\cyrh} {\cyrg}{\cyra}{\cyrm}{\cyri}{\cyrl}{\cyrsftsn}{\cyrt}{\cyro}{\cyrn}{\cyri}{\cyra}{\cyrn}{\cyro}{\cyrv}, {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrv}{\cyra}{\cyre}{\cyrm}{\cyrery}{\cyrh} {\cyrs}{\cyre}{\cyrk}{\cyrc}{\cyri}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyra}{\cyrm}{\cyri}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {689--702},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a4/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. Yu. Konyaev
TI  - Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами
JO  - Matematičeskie zametki
PY  - 2011
SP  - 689
EP  - 702
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a4/
LA  - ru
ID  - MZM_2011_90_5_a4
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. Yu. Konyaev
%T Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами
%J Matematičeskie zametki
%D 2011
%P 689-702
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a4/
%G ru
%F MZM_2011_90_5_a4
A. V. Bolsinov; A. Yu. Konyaev. Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 689-702. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a4/

[1] V. V. Trofimov, A. T. Fomenko, “Gruppovye neinvariantnye simplekticheskie struktury i gamiltonovy potoki na simmetricheskikh prostranstvakh”, Tr. sem. po vekt. i tenz. analizu, 21, Izd-vo Mosk. un-ta, M., 1983, 23–83 | MR | Zbl

[2] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl

[3] A. S. Mischenko, A. T. Fomenko, “Integrirovanie uravnenii Eilera na poluprostykh algebrakh Li”, Dokl. AN SSSR, 231:3 (1976), 536–538 | MR | Zbl

[4] A. S. Mischenko, A. T. Fomenko, “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego pril., 12:2 (1978), 46–56 | MR | Zbl

[5] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[6] A. S. Mischenko, A. T. Fomenko, “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Tr. sem. po vekt. i tenz. analizu, 19, Izd-vo Mosk. un-ta, M., 1979, 3–94 | Zbl

[7] A. S. Mischenko, A. T. Fomenko, “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Tr. sem. po vekt. i tenz. analizu, 20, Izd-vo Mosk. un-ta, M., 1981, 5–54 | Zbl

[8] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl

[9] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo Mosk. un-ta, M., 1988 | MR | Zbl

[10] E. V. Vinberg, “O nekotorykh kommutativnykh podalgebrakh universalnoi obertyvayuschei algebry”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 3–25 | MR | Zbl

[11] M. V. Mescheryakov, “O kharakteristicheskom svoistve tenzora inertsii mnogomernogo tverdogo tela”, UMN, 38:5 (1983), 201–202 | MR | Zbl

[12] A. V. Bolsinov, V. Kiosak, V. S. Matveev, “A Fubini theorem for pseudo-Riemannian geodesically equivalent metrics”, J. London Math. Soc. (2), 80:2 (2009), 341–356 | DOI | MR | Zbl

[13] A. V. Bolsinov, “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[14] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, “Invariants of real low dimension Lie algebras”, J. Mathematical Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl

[15] A. A. Korotkevich, “Integriruemye gamiltonovy sistemy na algebrakh Li maloi razmernosti”, Matem. sb., 200:12 (2009), 3–40 | MR | Zbl

[16] A. V. Bolsinov, K. M. Zuev, “Formalnaya teorema Frobeniusa i metod sdviga argumenta”, Matem. zametki, 86:1 (2009), 3–13 | MR | Zbl

[17] B. Kostant, “Lie Group Representations on Polynomial Rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl

[18] A. G. Elashvili, “Frobeniusovy algebry Li”, Funkts. analiz i ego pril., 16:4 (1982), 94–95 | MR | Zbl