Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_5_a0, author = {A. V. Aristarkhova and V. F. Kirichenko}, title = {Contact {Self-Dual} {Geometry} of {Quasi-Sasakian} {5-Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--658}, publisher = {mathdoc}, volume = {90}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/} }
A. V. Aristarkhova; V. F. Kirichenko. Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/
[1] A. Besse, Mnogoobraziya Einshteina, T. 1–2, Mir, M., 1990 | MR | Zbl
[2] R. Penrose, “The twistor programme”, Rep. Mathematical Phys., 12:1 (1977), 65–76 | DOI | MR
[3] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl
[4] B.-Y. Chen, “Some topological obstructions to Bochner–Kaehler metrics and their applications”, J. Differential Geom., 13:4 (1978), 547–558 | MR | Zbl
[5] J. P. Bourguignon, “Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein”, Invent. Math., 63:2 (1981), 263–286 | DOI | MR | Zbl
[6] A. Derdziński, “Self-duality of Kähler manifolds and Einstein manifolds of dimension four”, Compositio Math., 49:3 (1983), 405–433 | MR | Zbl
[7] M. Itoh, “Self-duality of Kähler surfaces”, Compositio Math., 51:2 (1984), 265–273 | MR | Zbl
[8] O. E. Arseneva, “Avtodualnaya geometriya obobschennykh kelerovykh mnogoobrazii”, Matem. sb., 184:8 (1993), 137–148 | MR | Zbl
[9] O. E. Arseneva, V. F. Kirichenko, “Avtodualnaya geometriya obobschennykh ermitovykh poverkhnostei”, Matem. sb., 189:1 (1998), 21–44 | MR | Zbl
[10] V. Apostolov, J. Davidov, O. Muškarov, “Compact self-dual Hermitian surfaces”, Trans. Amer. Math. Soc., 348:8 (1996), 3051–3063 | DOI | MR | Zbl
[11] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2002 | MR | Zbl
[12] D. E. Blair, “The theory of quasi-Sasakian structures”, J. Differential Geom., 1 (1967), 331–345 | MR | Zbl
[13] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhauser Boston, Boston, MA, 2002 | MR | Zbl
[14] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003
[15] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, Gostekhizdat, M., 1953 | MR | Zbl
[16] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl
[17] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR | Zbl
[18] V. F. Kirichenko, I. P. Borisovskii, “Integralnye mnogoobraziya kontaktnykh raspredelenii”, Matem. sb., 189:12 (1998), 119–134 | MR | Zbl
[19] V. F. Kirichenko, “Differentsialnaya geometriya glavnykh toroidalnykh rassloenii”, Fundament. i prikl. matem., 6:4 (2000), 1095–1120 | MR | Zbl