Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 643-658

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a self-dual geometry of quasi-Sasakian 5-manifolds. Namely, we intrinsically define the notion of contact conformally semiflat (i.e., contact self-dual or contact anti-self-dual) almost contact metric manifolds and also obtain a number of results concerning contact conformally semiflat quasi-Sasakian 5-manifolds. The most important results concerning Sasakian and cosymplectic manifolds reveal interesting relationships between the characteristics of these manifolds such as contact self-duality and constancy of the $\Phi$-holomorphic sectional curvature, contact anti-self-duality and Ricci flatness, etc.
Keywords: almost contact manifold, conformally semiflat manifold, quasi-Sasakian manifold, contact self-duality, Ricci flatness.
@article{MZM_2011_90_5_a0,
     author = {A. V. Aristarkhova and V. F. Kirichenko},
     title = {Contact {Self-Dual} {Geometry} of {Quasi-Sasakian} {5-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--658},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/}
}
TY  - JOUR
AU  - A. V. Aristarkhova
AU  - V. F. Kirichenko
TI  - Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds
JO  - Matematičeskie zametki
PY  - 2011
SP  - 643
EP  - 658
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/
LA  - ru
ID  - MZM_2011_90_5_a0
ER  - 
%0 Journal Article
%A A. V. Aristarkhova
%A V. F. Kirichenko
%T Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds
%J Matematičeskie zametki
%D 2011
%P 643-658
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/
%G ru
%F MZM_2011_90_5_a0
A. V. Aristarkhova; V. F. Kirichenko. Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/