Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 643-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a self-dual geometry of quasi-Sasakian 5-manifolds. Namely, we intrinsically define the notion of contact conformally semiflat (i.e., contact self-dual or contact anti-self-dual) almost contact metric manifolds and also obtain a number of results concerning contact conformally semiflat quasi-Sasakian 5-manifolds. The most important results concerning Sasakian and cosymplectic manifolds reveal interesting relationships between the characteristics of these manifolds such as contact self-duality and constancy of the $\Phi$-holomorphic sectional curvature, contact anti-self-duality and Ricci flatness, etc.
Keywords: almost contact manifold, conformally semiflat manifold, quasi-Sasakian manifold, contact self-duality, Ricci flatness.
@article{MZM_2011_90_5_a0,
     author = {A. V. Aristarkhova and V. F. Kirichenko},
     title = {Contact {Self-Dual} {Geometry} of {Quasi-Sasakian} {5-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--658},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/}
}
TY  - JOUR
AU  - A. V. Aristarkhova
AU  - V. F. Kirichenko
TI  - Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds
JO  - Matematičeskie zametki
PY  - 2011
SP  - 643
EP  - 658
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/
LA  - ru
ID  - MZM_2011_90_5_a0
ER  - 
%0 Journal Article
%A A. V. Aristarkhova
%A V. F. Kirichenko
%T Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds
%J Matematičeskie zametki
%D 2011
%P 643-658
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/
%G ru
%F MZM_2011_90_5_a0
A. V. Aristarkhova; V. F. Kirichenko. Contact Self-Dual Geometry of Quasi-Sasakian 5-Manifolds. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a0/

[1] A. Besse, Mnogoobraziya Einshteina, T. 1–2, Mir, M., 1990 | MR | Zbl

[2] R. Penrose, “The twistor programme”, Rep. Mathematical Phys., 12:1 (1977), 65–76 | DOI | MR

[3] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl

[4] B.-Y. Chen, “Some topological obstructions to Bochner–Kaehler metrics and their applications”, J. Differential Geom., 13:4 (1978), 547–558 | MR | Zbl

[5] J. P. Bourguignon, “Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein”, Invent. Math., 63:2 (1981), 263–286 | DOI | MR | Zbl

[6] A. Derdziński, “Self-duality of Kähler manifolds and Einstein manifolds of dimension four”, Compositio Math., 49:3 (1983), 405–433 | MR | Zbl

[7] M. Itoh, “Self-duality of Kähler surfaces”, Compositio Math., 51:2 (1984), 265–273 | MR | Zbl

[8] O. E. Arseneva, “Avtodualnaya geometriya obobschennykh kelerovykh mnogoobrazii”, Matem. sb., 184:8 (1993), 137–148 | MR | Zbl

[9] O. E. Arseneva, V. F. Kirichenko, “Avtodualnaya geometriya obobschennykh ermitovykh poverkhnostei”, Matem. sb., 189:1 (1998), 21–44 | MR | Zbl

[10] V. Apostolov, J. Davidov, O. Muškarov, “Compact self-dual Hermitian surfaces”, Trans. Amer. Math. Soc., 348:8 (1996), 3051–3063 | DOI | MR | Zbl

[11] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2002 | MR | Zbl

[12] D. E. Blair, “The theory of quasi-Sasakian structures”, J. Differential Geom., 1 (1967), 331–345 | MR | Zbl

[13] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhauser Boston, Boston, MA, 2002 | MR | Zbl

[14] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[15] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, Gostekhizdat, M., 1953 | MR | Zbl

[16] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl

[17] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR | Zbl

[18] V. F. Kirichenko, I. P. Borisovskii, “Integralnye mnogoobraziya kontaktnykh raspredelenii”, Matem. sb., 189:12 (1998), 119–134 | MR | Zbl

[19] V. F. Kirichenko, “Differentsialnaya geometriya glavnykh toroidalnykh rassloenii”, Fundament. i prikl. matem., 6:4 (2000), 1095–1120 | MR | Zbl