Haar System on the Product of Groups of~$p$-Adic Integers
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 541-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an algorithm for constructing dilation operators on the product of groups of $p$-adic integers and construct a system of Haar functions which is obtained from a single function by using the operations of contraction, translation, and raising to a power. In the two-dimensional case, we describe all the Haar bases.
Keywords: system of Haar functions, the group of $p$-adic integers, wavelet basis, Haar basis, compact group, Rademacher function, dilation operator, cyclic subgroup, coset.
Mots-clés : quotient group
@article{MZM_2011_90_4_a5,
     author = {S. F. Lukomskii},
     title = {Haar {System} on the {Product} of {Groups} of~$p${-Adic} {Integers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {541--557},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a5/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - Haar System on the Product of Groups of~$p$-Adic Integers
JO  - Matematičeskie zametki
PY  - 2011
SP  - 541
EP  - 557
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a5/
LA  - ru
ID  - MZM_2011_90_4_a5
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T Haar System on the Product of Groups of~$p$-Adic Integers
%J Matematičeskie zametki
%D 2011
%P 541-557
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a5/
%G ru
%F MZM_2011_90_4_a5
S. F. Lukomskii. Haar System on the Product of Groups of~$p$-Adic Integers. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 541-557. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a5/

[1] S. V. Kozyrev, “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | MR | Zbl

[2] S. V. Kozyrev, “$p$-adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, TMF, 138:3 (2004), 383–394 | MR | Zbl

[3] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-Adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl

[4] V. Shelkovich, M. Skopina, “$p$-Adic Haar multiresoluton analysis and pseudo-differential operators”, J. Fourier Anal. Appl., 15:3 (2009), 366–393 | DOI | MR | Zbl

[5] A. Yu. Khrennikov, V. M. Shelkovich, M. A. Skopina, “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl

[6] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-Adic nonorthogonal wavelet bases”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, Sbornik statei, Tr. MIAN, 265, MAIK, M., 2009, 7–18 | MR | Zbl

[7] E. J. King, M. A. Skopina, “Quincunx multiresolution analysis for $L^2(\mathbb Q_2^2)$”, $p$-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 222–231 | DOI | MR

[8] S. F. Lukomskii, “O ryadakh Khaara na kompaktnoi nul-mernoi gruppe”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 14–19

[9] G. N. Ageev, N. Ya. Vilenkin, G. M. Dzhafari, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, ELM, Baku, 1981

[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[11] I. Ya. Novikov, I. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl