Continuity in $\Lambda$-Variation and Summation of Multiple Fourier Series by Ces\`aro Methods
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 483-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct new examples of functions of bounded $\Lambda$-variation not continuous in $\Lambda$-variation. Using these examples, we show that, in the problem of the summability of multiple Fourier series by the Cesàro method of negative order, the condition of continuity in $\Lambda$-variation, is essential in contrast to the one-dimensional case.
Keywords: multiple Fourier series, Cesàro mean, bounded variation, Waterman class of functions, Pringsheim convergence.
Mots-clés : $\Lambda$-variation
@article{MZM_2011_90_4_a0,
     author = {A. N. Bakhvalov},
     title = {Continuity in $\Lambda${-Variation} and {Summation} of {Multiple} {Fourier} {Series} by {Ces\`aro} {Methods}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--500},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a0/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - Continuity in $\Lambda$-Variation and Summation of Multiple Fourier Series by Ces\`aro Methods
JO  - Matematičeskie zametki
PY  - 2011
SP  - 483
EP  - 500
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a0/
LA  - ru
ID  - MZM_2011_90_4_a0
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T Continuity in $\Lambda$-Variation and Summation of Multiple Fourier Series by Ces\`aro Methods
%J Matematičeskie zametki
%D 2011
%P 483-500
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a0/
%G ru
%F MZM_2011_90_4_a0
A. N. Bakhvalov. Continuity in $\Lambda$-Variation and Summation of Multiple Fourier Series by Ces\`aro Methods. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 483-500. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a0/

[1] D. Waterman, “On convergence of Fourier series of functions of bounded generalized variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] A. A. Saakyan, “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR. Matem., 21:6 (1986), 517–529 | MR | Zbl

[3] A. I. Sablin, “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matem., 1987, no. 10, 66–68 | MR | Zbl

[4] A. N. Bakhvalov, “Nepreryvnost po $\Lambda $-variatsii funktsii mnogikh peremennykh i skhodimost kratnykh ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl

[5] D. Waterman, “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia Math., 55:1 (1976), 87–95 | MR | Zbl

[6] O. S. Dragoshanskii, “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh”, Matem. sb., 194:7 (2003), 57–82 | MR | Zbl

[7] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[8] L. V. Zhizhiashvili, Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd-vo Tbilissk. un-ta, Tbilisi, 1993

[9] A. N. Bakhvalov, “O summirovanii ryadov Fure funktsii iz mnogomernykh klassov ogranichennoi $\Lambda$-variatsii”, Materialy mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki”, Izd-vo TulGU, Tula, 2009, 13–16

[10] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl