Embedding of Products $Q(k)\times B(\tau)$ in Absolute $A$-Sets
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 408-421

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems about closed embeddings in absolute $A$-sets of the products $Q(k)\times B(\tau)$, $Q(k)\times \nobreak\mathscr N$, and $Q(k)\times C$ are proved. These are generalizations to the nonseparable case of theorems of Saint-Raymond, van Mill, and van Engelen about closed embeddings in separable absolute Borel sets of the products $Q\times \mathscr N$ and $Q\times C$, where $Q$ is the space of rational numbers, $C$ is the Cantor perfect set, and $\mathscr N$ is the space of irrational numbers.
Keywords: rational and irrational numbers, Cantor set, absolute $A$-set, $G_\delta$-set, $F_\sigma$-set, closed embedding, metric space, complete metric space, absolute Borel set
Mots-clés : Baire space.
@article{MZM_2011_90_3_a6,
     author = {S. V. Medvedev},
     title = {Embedding of {Products} $Q(k)\times B(\tau)$ in {Absolute} $A${-Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {408--421},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a6/}
}
TY  - JOUR
AU  - S. V. Medvedev
TI  - Embedding of Products $Q(k)\times B(\tau)$ in Absolute $A$-Sets
JO  - Matematičeskie zametki
PY  - 2011
SP  - 408
EP  - 421
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a6/
LA  - ru
ID  - MZM_2011_90_3_a6
ER  - 
%0 Journal Article
%A S. V. Medvedev
%T Embedding of Products $Q(k)\times B(\tau)$ in Absolute $A$-Sets
%J Matematičeskie zametki
%D 2011
%P 408-421
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a6/
%G ru
%F MZM_2011_90_3_a6
S. V. Medvedev. Embedding of Products $Q(k)\times B(\tau)$ in Absolute $A$-Sets. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 408-421. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a6/