Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_3_a6, author = {S. V. Medvedev}, title = {Embedding of {Products} $Q(k)\times B(\tau)$ in {Absolute} $A${-Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {408--421}, publisher = {mathdoc}, volume = {90}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a6/} }
S. V. Medvedev. Embedding of Products $Q(k)\times B(\tau)$ in Absolute $A$-Sets. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 408-421. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a6/
[1] J. Saint-Raymond, “La structure borélienne d'Effros est-elle standard?”, Fund. math., 100:3 (1978), 201–210 | MR | Zbl
[2] F. van Engelen, J. van Mill, “Borel sets in compact spaces: some Hurewicz type theorems”, Fund. Math., 124:3 (1984), 271–286 | MR | Zbl
[3] A. H. Stone, “Non-separable Borel sets”, Rozpr. Mat., 28 (1962) | MR | Zbl
[4] A. H. Stone, “Non-separable Borel sets, II”, General Topology and Appl., 2:3 (1972), 249–270 | DOI | MR | Zbl
[5] S. V. Medvedev, “Neseparabelnye $h$-odnorodnye metricheskie prostranstva”, Kardinalnye invarianty i otobrazheniya topologicheskikh prostranstv, Udmurtskii gos. un-t, Izhevsk, 1984, 58–63 | MR
[6] S. V. Medvedev, Obobschenie dvukh teorem Gurevicha na neseparabelnyi sluchai, Dep. v VINITI No 6823-84
[7] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl
[8] R. W. Hansell, “On characterizing non-separable analytic and extended Borel sets as types of continuous images”, Proc. London Math. Soc. (3), 28:4 (1974), 683–699 | DOI | MR | Zbl
[9] S. V. Medvedev, “Prodolzhenie gomeomorfizmov v nulmernykh metricheskikh prostranstvakh”, Voprosy geometrii i topologii, Petrozavodskii gos. un-t, Petrozavodsk, 1986, 41–50 | MR