GIT-Equivalence and Diagonal Actions
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 269-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the GIT-equivalence classes of the linearized linear bundles for the diagonal actions of the linear algebraic groups $\operatorname{SL}(V)$ and $\operatorname{SO}(V)$ on the projective varieties $\mathbb{P}(V)^{m_1}\times\mathbb{P}(V^*)^{m_2}$ and $\mathbb{P}(V)^m$, respectively, are described explicitly.
Keywords: linearized linear bundle, projective variety, linear algebraic group, fan of cones
Mots-clés : diagonal action, GIT-equivalence, Picard group, GIT-fan.
@article{MZM_2011_90_2_a8,
     author = {P. Yu. Kotenkova},
     title = {GIT-Equivalence and {Diagonal} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--279},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a8/}
}
TY  - JOUR
AU  - P. Yu. Kotenkova
TI  - GIT-Equivalence and Diagonal Actions
JO  - Matematičeskie zametki
PY  - 2011
SP  - 269
EP  - 279
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a8/
LA  - ru
ID  - MZM_2011_90_2_a8
ER  - 
%0 Journal Article
%A P. Yu. Kotenkova
%T GIT-Equivalence and Diagonal Actions
%J Matematičeskie zametki
%D 2011
%P 269-279
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a8/
%G ru
%F MZM_2011_90_2_a8
P. Yu. Kotenkova. GIT-Equivalence and Diagonal Actions. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a8/

[1] I. V. Arzhantsev, J. Hausen, “Geometric invariant theory via Cox rings”, J. Pure Appl. Algebra, 213:1 (2009), 154–172 | DOI | MR | Zbl

[2] F. Berchtold, J. Hausen, “GIT-equivalence beyond the ample cone”, Michigan Math. J., 54:3 (2006), 483–516 | DOI | MR | Zbl

[3] I. V. Dolgachev, Y. Hu, “Variation of geometric invariant theory quantients”, Inst. Hautes Études Sci. Publ. Math., 87:1 (1998), 5–51 | DOI | MR | Zbl

[4] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. (2), 34, Springer-Verlag, Berlin, 1993 | MR | Zbl

[5] N. Ressayre, “The GIT-equivalence for $G$-line bundles”, Geom. Dedicata, 81:1-3 (2000), 295–324 | DOI | MR | Zbl

[6] M. Thaddeus, “Geometric invariant theory and flips”, J. Amer. Math. Soc., 9:3 (1996), 691–723 | DOI | MR | Zbl

[7] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl