Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_2_a8, author = {P. Yu. Kotenkova}, title = {GIT-Equivalence and {Diagonal} {Actions}}, journal = {Matemati\v{c}eskie zametki}, pages = {269--279}, publisher = {mathdoc}, volume = {90}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a8/} }
P. Yu. Kotenkova. GIT-Equivalence and Diagonal Actions. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a8/
[1] I. V. Arzhantsev, J. Hausen, “Geometric invariant theory via Cox rings”, J. Pure Appl. Algebra, 213:1 (2009), 154–172 | DOI | MR | Zbl
[2] F. Berchtold, J. Hausen, “GIT-equivalence beyond the ample cone”, Michigan Math. J., 54:3 (2006), 483–516 | DOI | MR | Zbl
[3] I. V. Dolgachev, Y. Hu, “Variation of geometric invariant theory quantients”, Inst. Hautes Études Sci. Publ. Math., 87:1 (1998), 5–51 | DOI | MR | Zbl
[4] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. (2), 34, Springer-Verlag, Berlin, 1993 | MR | Zbl
[5] N. Ressayre, “The GIT-equivalence for $G$-line bundles”, Geom. Dedicata, 81:1-3 (2000), 295–324 | DOI | MR | Zbl
[6] M. Thaddeus, “Geometric invariant theory and flips”, J. Amer. Math. Soc., 9:3 (1996), 691–723 | DOI | MR | Zbl
[7] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl