Inverse Problem of the Variational Calculus for Differential Equations of Second Order with Deviating Argument
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 231-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for the solvability of the inverse problem of the variational calculus for differential equations of second order with deviating argument of special form as well as the formula for the functional of the inverse problem defined by the integral that differs from the standard one by that the required function has a retarded argument.
Keywords: differential equation of second order with deviating argument, inverse problem of the variational calculus, function with retarded argument, Pontryagin's maximum principle, the spaces $W^1_2$.
Mots-clés : Euler's equation
@article{MZM_2011_90_2_a5,
     author = {V. G. Zadorozhniy and G. A. Kurina},
     title = {Inverse {Problem} of the {Variational} {Calculus} for {Differential} {Equations} of {Second} {Order} with {Deviating} {Argument}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a5/}
}
TY  - JOUR
AU  - V. G. Zadorozhniy
AU  - G. A. Kurina
TI  - Inverse Problem of the Variational Calculus for Differential Equations of Second Order with Deviating Argument
JO  - Matematičeskie zametki
PY  - 2011
SP  - 231
EP  - 241
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a5/
LA  - ru
ID  - MZM_2011_90_2_a5
ER  - 
%0 Journal Article
%A V. G. Zadorozhniy
%A G. A. Kurina
%T Inverse Problem of the Variational Calculus for Differential Equations of Second Order with Deviating Argument
%J Matematičeskie zametki
%D 2011
%P 231-241
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a5/
%G ru
%F MZM_2011_90_2_a5
V. G. Zadorozhniy; G. A. Kurina. Inverse Problem of the Variational Calculus for Differential Equations of Second Order with Deviating Argument. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a5/

[1] V. G. Zadorozhnii, Metody variatsionnogo analiza, IKI, M.–Izhevsk, 2006

[2] L. E. Elsgolts, S. B. Norkin, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR | Zbl

[3] L. E. Elsgolts, Kachestvennye metody v matematicheskom analize, Gostekhizdat, M., 1955 | MR

[4] G. Kamenskii, “On boundary value problems connected with variational problems for nonlocal functionals”, Funct. Differ. Equ., 12, no. 3-4, 2005, 245–270 | MR | Zbl

[5] G. A. Kamenskii, “Asimmetrichnye variatsionnye zadachi dlya funktsionalov s otklonyayuschimsya argumentom”, Ukr. matem. zhurn., 41, no. 5, 1989, 602–609 | MR | Zbl

[6] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, 3-e izd., Nauka, M., 1976 | MR | Zbl

[7] L. S. Gnoenskii, G. A. Kamenskii, L. E. Elsgolts, Matematicheskie osnovy teorii upravlyaemykh sistem, Nauka, M., 1969 | MR | Zbl