Toral Rank Conjecture for Moment-Angle Complexes
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 300-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an operation $K\mapsto L(K)$ on the set of simplicial complexes, which we call the “doubling operation.” This combinatorial operation was recently introduced in toric topology in an unpublished paper of Bahri, Bendersky, Cohen and Gitler on generalized moment-angle complexes (also known as $K$-powers). The main property of the doubling operation is that the moment-angle complex $\mathscr Z_K$ can be identified with the real moment-angle complex $\mathbb R\mathscr Z_{L(K)}$ for the double $L(K)$. By way of application, we prove the toral rank conjecture for the spaces $\mathscr{Z}_K$ by providing a lower bound for the rank of the cohomology ring of the real moment-angle complexes $\mathbb R\mathscr Z_K$. This paper can be viewed as a continuation of the author's previous paper, where the doubling operation for polytopes was used to prove the toral rank conjecture for moment-angle manifolds.
Keywords: moment-angle manifold, simplicial complex, doubling, toral rank conjecture, cohomology rank, Mayer–Vietoris sequence.
Mots-clés : moment-angle complex
@article{MZM_2011_90_2_a11,
     author = {Yu. M. Ustinovskii},
     title = {Toral {Rank} {Conjecture} for {Moment-Angle} {Complexes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {300--305},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a11/}
}
TY  - JOUR
AU  - Yu. M. Ustinovskii
TI  - Toral Rank Conjecture for Moment-Angle Complexes
JO  - Matematičeskie zametki
PY  - 2011
SP  - 300
EP  - 305
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a11/
LA  - ru
ID  - MZM_2011_90_2_a11
ER  - 
%0 Journal Article
%A Yu. M. Ustinovskii
%T Toral Rank Conjecture for Moment-Angle Complexes
%J Matematičeskie zametki
%D 2011
%P 300-305
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a11/
%G ru
%F MZM_2011_90_2_a11
Yu. M. Ustinovskii. Toral Rank Conjecture for Moment-Angle Complexes. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 300-305. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a11/

[2] A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “On an infinite family of toric manifolds associated to a given one” (to appear)

[3] Yu. M. Ustinovskii, “Operatsiya udvoeniya mnogogrannikov i deistviya tora”, UMN, 64:5 (2009), 181–182 | MR | Zbl

[4] S. Gitler, S. Lopez de Medrano, Intersections of Quadrics, Moment-Angle Manifolds and Connected Sums, 2009, arXiv: math.GT/0901.2580

[5] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004

[6] S. Halperin, “Rational homotopy and torus actions”, Aspects of Topology, London Math. Soc. Lecture Notes Ser., 93, Cambridge Univ. Press, Cambridge, 1985, 293–306 | MR | Zbl

[7] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[8] X. Cao, Z. Lu, Möbius Transform, Moment-Angle Complexes and Halperin–Carlsson Conjecture, 2009, arXiv: math.CO/0908.3174