Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_2_a10, author = {D. A. Stepanov}, title = {Smooth {Three-Dimensional} {Canonical} {Thresholds}}, journal = {Matemati\v{c}eskie zametki}, pages = {285--299}, publisher = {mathdoc}, volume = {90}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/} }
D. A. Stepanov. Smooth Three-Dimensional Canonical Thresholds. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 285-299. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/
[1] J. Kollár, “Singularities of pairs”, Algebraic Geometry (Santa Cruz, CA, 1995), Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl
[2] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl
[3] C. Birkar, V. V. Shokurov, “Mld's vs thresholds and flips”, J. Reine Angew. Math., 638 (2010), 210-234, arXiv: math.AG/0609539 | MR | Zbl
[4] J. Kollár, Which Powers of Holomorphic Functions are Integrable?, 2008, arXiv: math.AG/0805.0756
[5] T. de Fernex, M. Mustaţă, “Limits of log canonical thresholds”, Ann. Sci. Éc. Norm. Supér. (4), 42:3 (2009), 491–515 | MR | Zbl
[6] T. de Fernex, L. Ein, M. Mustaţă, “Shokurov's ACC conjecture for log canonical thresholds on smooth varieties”, Duke Math. J., 152:1 (2010), 93–114, arXiv: math.AG/0905.3775 | MR | Zbl
[7] Yu. Prokhorov, “Gap conjecture for 3-dimensional canonical thresholds”, J. Math. Sci. Univ. Tokyo, 15:4 (2008), 449–459 | MR | Zbl
[8] M. Kawakita, “Divisorial contractions in dimension three which contract divisors to smooth points”, Invent. Math., 145:1 (2001), 105–119 | DOI | MR | Zbl
[9] K. Matsuki, Introduction to Mori's Program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl
[10] Yu. G. Prochorov, Lectures on Complements on Log Surfaces, MSJ Mem., 10, Math. Soc. of Japan, Tokyo, 2001 | MR | Zbl
[11] S. Mori, “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116:1 (1982), 133–176 | DOI | MR | Zbl
[12] A. N. Varchenko, “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37:3 (1976), 253–262 | DOI | MR | Zbl
[13] A. G. Khovanskii, S. P. Chulkov, Geometriya polugruppy $\mathbb{Z}_{\ge 0}^{n}$. Prilozheniya k kombinatorike, algebre i differentsialnym uravneniyam, MTsNMO, M., 2009