Smooth Three-Dimensional Canonical Thresholds
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 285-299

Voir la notice de l'article provenant de la source Math-Net.Ru

If $X$ is an algebraic variety with at most canonical singularities and $S$ is a $\mathbb{Q}$-Cartier hypersurface in $X$, then the canonical threshold of the pair $(X,S)$ is defined as the least upper bound of the reals $c$ for which the pair $(X,cS)$ is canonical. We show that the set of all possible canonical thresholds of the pairs $(X,S)$, where $X$ is smooth and three-dimensional, satisfies the ascending chain condition. We also derive a formula for the canonical threshold of the pair $(\mathbb{C}^3,S)$, where $S$ is a Brieskorn singularity.
Keywords: algebraic variety, canonical singularity, canonical threshold, Brieskorn singularity, minimal model program, Picard number.
Mots-clés : $\mathbb{Q}$-Cartier hypersurface
@article{MZM_2011_90_2_a10,
     author = {D. A. Stepanov},
     title = {Smooth {Three-Dimensional} {Canonical} {Thresholds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--299},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/}
}
TY  - JOUR
AU  - D. A. Stepanov
TI  - Smooth Three-Dimensional Canonical Thresholds
JO  - Matematičeskie zametki
PY  - 2011
SP  - 285
EP  - 299
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/
LA  - ru
ID  - MZM_2011_90_2_a10
ER  - 
%0 Journal Article
%A D. A. Stepanov
%T Smooth Three-Dimensional Canonical Thresholds
%J Matematičeskie zametki
%D 2011
%P 285-299
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/
%G ru
%F MZM_2011_90_2_a10
D. A. Stepanov. Smooth Three-Dimensional Canonical Thresholds. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 285-299. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/