Smooth Three-Dimensional Canonical Thresholds
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 285-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $X$ is an algebraic variety with at most canonical singularities and $S$ is a $\mathbb{Q}$-Cartier hypersurface in $X$, then the canonical threshold of the pair $(X,S)$ is defined as the least upper bound of the reals $c$ for which the pair $(X,cS)$ is canonical. We show that the set of all possible canonical thresholds of the pairs $(X,S)$, where $X$ is smooth and three-dimensional, satisfies the ascending chain condition. We also derive a formula for the canonical threshold of the pair $(\mathbb{C}^3,S)$, where $S$ is a Brieskorn singularity.
Keywords: algebraic variety, canonical singularity, canonical threshold, Brieskorn singularity, minimal model program, Picard number.
Mots-clés : $\mathbb{Q}$-Cartier hypersurface
@article{MZM_2011_90_2_a10,
     author = {D. A. Stepanov},
     title = {Smooth {Three-Dimensional} {Canonical} {Thresholds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--299},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/}
}
TY  - JOUR
AU  - D. A. Stepanov
TI  - Smooth Three-Dimensional Canonical Thresholds
JO  - Matematičeskie zametki
PY  - 2011
SP  - 285
EP  - 299
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/
LA  - ru
ID  - MZM_2011_90_2_a10
ER  - 
%0 Journal Article
%A D. A. Stepanov
%T Smooth Three-Dimensional Canonical Thresholds
%J Matematičeskie zametki
%D 2011
%P 285-299
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/
%G ru
%F MZM_2011_90_2_a10
D. A. Stepanov. Smooth Three-Dimensional Canonical Thresholds. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 285-299. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a10/

[1] J. Kollár, “Singularities of pairs”, Algebraic Geometry (Santa Cruz, CA, 1995), Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[2] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[3] C. Birkar, V. V. Shokurov, “Mld's vs thresholds and flips”, J. Reine Angew. Math., 638 (2010), 210-234, arXiv: math.AG/0609539 | MR | Zbl

[4] J. Kollár, Which Powers of Holomorphic Functions are Integrable?, 2008, arXiv: math.AG/0805.0756

[5] T. de Fernex, M. Mustaţă, “Limits of log canonical thresholds”, Ann. Sci. Éc. Norm. Supér. (4), 42:3 (2009), 491–515 | MR | Zbl

[6] T. de Fernex, L. Ein, M. Mustaţă, “Shokurov's ACC conjecture for log canonical thresholds on smooth varieties”, Duke Math. J., 152:1 (2010), 93–114, arXiv: math.AG/0905.3775 | MR | Zbl

[7] Yu. Prokhorov, “Gap conjecture for 3-dimensional canonical thresholds”, J. Math. Sci. Univ. Tokyo, 15:4 (2008), 449–459 | MR | Zbl

[8] M. Kawakita, “Divisorial contractions in dimension three which contract divisors to smooth points”, Invent. Math., 145:1 (2001), 105–119 | DOI | MR | Zbl

[9] K. Matsuki, Introduction to Mori's Program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl

[10] Yu. G. Prochorov, Lectures on Complements on Log Surfaces, MSJ Mem., 10, Math. Soc. of Japan, Tokyo, 2001 | MR | Zbl

[11] S. Mori, “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116:1 (1982), 133–176 | DOI | MR | Zbl

[12] A. N. Varchenko, “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37:3 (1976), 253–262 | DOI | MR | Zbl

[13] A. G. Khovanskii, S. P. Chulkov, Geometriya polugruppy $\mathbb{Z}_{\ge 0}^{n}$. Prilozheniya k kombinatorike, algebre i differentsialnym uravneniyam, MTsNMO, M., 2009