The WKB Method and Differential Consequences of the Riccati Equation
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 929-937.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized WKB method based on the use of the differential consequences of the Riccati equation is presented. The method combines the simplicity of the traditional WKB method and the universality of the Maslov method: in the case of a smooth potential with classical turning points in a bounded space interval, the leading term of the expansion is found as a root of an algebraic equation and provides a regular approximate solution in the whole domain of the potential; we can increase the accuracy of this solution by taking new differential consequences into account.
Keywords: WKB method, differential consequences of the Riccati equation, Maslov method, turning point, Airy function.
Mots-clés : Riccati equation, Planck constant
@article{MZM_2011_89_6_a11,
     author = {N. L. Chuprikov},
     title = {The {WKB} {Method} and {Differential} {Consequences} of the {Riccati} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {929--937},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a11/}
}
TY  - JOUR
AU  - N. L. Chuprikov
TI  - The WKB Method and Differential Consequences of the Riccati Equation
JO  - Matematičeskie zametki
PY  - 2011
SP  - 929
EP  - 937
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a11/
LA  - ru
ID  - MZM_2011_89_6_a11
ER  - 
%0 Journal Article
%A N. L. Chuprikov
%T The WKB Method and Differential Consequences of the Riccati Equation
%J Matematičeskie zametki
%D 2011
%P 929-937
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a11/
%G ru
%F MZM_2011_89_6_a11
N. L. Chuprikov. The WKB Method and Differential Consequences of the Riccati Equation. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 929-937. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a11/

[1] D. Bom, Kvantovaya teoriya, Nauka, M., 1965 | MR | Zbl

[2] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Teoreticheskaya fizika, 3, Nauka, M., 1974 | MR | Zbl

[3] N. Freman, P. U. Freman, VKB-priblizhenie, Mir, M., 1967 | MR

[4] M. V. Fedoryuk, “Asimptoticheskie metody v analize”, Analiz – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 13, VINITI, M., 1986, 93–210 | MR | Zbl

[5] A. Naife, Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR | Zbl

[6] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[7] S. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl

[8] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1982

[9] N. E. Maltsev, “New family of asymptotic solutions of Helmholtz equation”, J. Math. Phys., 35:3 (1994), 1387–1398 | DOI | MR | Zbl

[10] N. L. Chuprikov, “The even asymptotic solution of the 1D-Schrödinger equation with non- degenerate turning points”, Proc. of International Symposium “Physics and Engineering of Millimeter and Submillimeter Waves” (Kharkov, Ukraine, 1994), 1, Institute of Radiophysics and Electronics of National Academy of Science of Ukraine, Kharkov, 1994, 243–246

[11] N. L. Chuprikov, “The even asymptotic solution of the 1D-Schrödinger equation with N-fold turning points”, Proc. of International Symposium “Physics and Engineering of Millimeter and Submillimeter Waves” (Kharkov, Ukraine, 1994), 1, Institute of Radiophysics and Electronics of National Academy of Science of Ukraine, Kharkov, 1994, 240–242

[12] N. L Chuprikov, Ravnomernaya asimptotika resheniya odnomernogo uravneniya Shredingera s tochkami povorota, Dep. v VINITI No V94, 1994

[13] T. Hyouguchi, S. Adachi, M. Ueda, “Divergence-free WKB method”, Phys. Rev. Lett., 88 (2002), 170404 | DOI