Discrete Wavelets and the Vilenkin--Chrestenson Transform
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 914-928.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the spaces of complex periodic sequences, we use the Vilenkin–Chrestenson transforms to construct new orthogonal wavelet bases defined by finite collections of parameters. Earlier similar bases were defined for the Cantor and Vilenkin groups by means of generalized Walsh functions. It is noted that similar constructions can be realized for biorthogonal wavelets as well as for the space $\ell^2(\mathbb{Z}_+)$.
Keywords: Walsh functions, Haar basis, Cantor group, Vilenkin–Chrestenson transform, Hausholder transform, discrete wavelets, multiresolution analysis, complex periodic sequences.
Mots-clés : biorthogonal wavelets
@article{MZM_2011_89_6_a10,
     author = {Yu. A. Farkov},
     title = {Discrete {Wavelets} and the {Vilenkin--Chrestenson} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {914--928},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a10/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - Discrete Wavelets and the Vilenkin--Chrestenson Transform
JO  - Matematičeskie zametki
PY  - 2011
SP  - 914
EP  - 928
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a10/
LA  - ru
ID  - MZM_2011_89_6_a10
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T Discrete Wavelets and the Vilenkin--Chrestenson Transform
%J Matematičeskie zametki
%D 2011
%P 914-928
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a10/
%G ru
%F MZM_2011_89_6_a10
Yu. A. Farkov. Discrete Wavelets and the Vilenkin--Chrestenson Transform. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 914-928. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a10/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR | Zbl

[2] V. N. Malozemov, S. M. Masharskii, “Obobschennye veivletnye bazisy, svyazannye s diskretnym preobrazovaniem Vilenkina–Krestensona”, Algebra i analiz, 13:1 (2001), 111–157 | MR | Zbl

[3] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl

[4] Yu. A. Farkov, “Ortogonalnye veivlety na pryamykh proizvedeniyakh tsiklicheskikh grupp”, Matem. zametki, 82:6 (2007), 934–952 | MR | Zbl

[5] Yu. A. Farkov, “Biortogonalnye vspleski na gruppakh Vilenkina”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, Sbornik statei, Tr. MIAN, 265, MAIK, M., 2009, 110–124 | MR | Zbl

[6] M. Freizer, Vvedenie v veivlety v svete lineinoi algebry, BINOM. Lab. znanii, M., 2008 | MR | Zbl

[7] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl

[8] V. Yu. Protasov, Yu. A. Farkov, “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Matem. sb., 197:10 (2006), 129–160 | MR | Zbl

[9] Yu. A. Farkov, “On wavelets related to the Walsh series”, J. Approx. Theory, 161:1 (2009), 259–279 | DOI | MR | Zbl

[10] S. A. Broughton, K. Bryan, Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing, John Wiley Sons, Hoboken, NJ, 2009 | MR | Zbl

[11] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005 | MR | Zbl