Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 808-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

All finite-dimensional simple modular Lie algebras with Cartan matrix fail to have deformations, even infinitesimal ones, if the characteristic $p$ of the ground field is equal to $0$ or exceeds $3$. If $p=3$, then the orthogonal Lie algebra $\mathfrak o(5)$ is one of two simple modular Lie algebras with Cartan matrix that do have deformations (the Brown algebras $\mathfrak{br}(2;\alpha)$ appear in this family of deformations of the $10$-dimensional Lie algebras, and therefore are not listed separately); moreover, the $29$-dimensional Brown algebra $\mathfrak{br}(3)$ is the only other simple Lie algebra which has a Cartan matrix and admits a deformation. Kostrikin and Kuznetsov described the orbits (isomorphism classes) under the action of an algebraic group $O(5)$ of automorphisms of the Lie algebra $\mathfrak o(5)$ on the space $H^2(\mathfrak o(5);\mathfrak o(5))$ of infinitesimal deformations and presented representatives of the isomorphism classes. We give here an explicit description of the global deformations of the Lie algebra $\mathfrak o(5)$ and describe the deformations of a simple analog of this orthogonal algebra in characteristic $2$. In characteristic $3$, we have found the representatives of the isomorphism classes of the deformed algebras that linearly depend on the parameter.
Keywords: finite-dimensional simple modular Lie algebra, Brown algebra, infinitesimal deformation, global deformation, Jacobi identity, Massey bracket, Chevalley basis.
Mots-clés : Cartan matrix, Maurer–Cartan equation
@article{MZM_2011_89_6_a1,
     author = {S. Bouarroudj and A. V. Lebedev and F. Vagemann},
     title = {Deformations of the {Lie} {Algebra} $\mathfrak{o}(5)$ in {Characteristics~}$3$ and~$2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {808--824},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/}
}
TY  - JOUR
AU  - S. Bouarroudj
AU  - A. V. Lebedev
AU  - F. Vagemann
TI  - Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 808
EP  - 824
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/
LA  - ru
ID  - MZM_2011_89_6_a1
ER  - 
%0 Journal Article
%A S. Bouarroudj
%A A. V. Lebedev
%A F. Vagemann
%T Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
%J Matematičeskie zametki
%D 2011
%P 808-824
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/
%G ru
%F MZM_2011_89_6_a1
S. Bouarroudj; A. V. Lebedev; F. Vagemann. Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 808-824. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/

[1] A. I. Kostrikin, M. I. Kuznetsov, “Deformatsii klassicheskikh algebr Li v kharakteristike tri”, Dokl. RAN, 343:3 (1995), 299–301 | MR | Zbl

[2] A. N. Rudakov, “Deformatsii prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 35:5 (1971), 1113–1119 | MR | Zbl

[3] A. Fialowski, D. Fuchs, “Singular deformations of Lie algebras. Example: deformations of the Lie algeb $L_1$”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 77–92 ; arXiv: math.QA/9706027 | MR | Zbl

[4] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[5] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Gruppy Li i algebry Li – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 21, VINITI, M., 1988, 121–209 | MR | Zbl

[6] D. A. Leites, I. M. Schepochkina, “Kak kvantovat antiskobku?”, TMF, 126:3 (2001), 339–369 ; arXiv: math-ph/0510048 | MR | Zbl

[7] S. Bouarroudj, P. Grozman, D. Leites, “Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix”, SIGMA, 5 (2009), 060, 63 pp. ; arXiv: math.RT/0710.5149 | DOI | MR

[8] S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, “Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix”, Homology, Homotopy Appl., 12:1 (2010), 237–278 ; arXiv: math.RT/0911.0243 | MR | Zbl

[9] A. I. Kostrikin, “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34:4 (1970), 744–756 | MR | Zbl

[10] B. Yu. Veisfeiler, V. G. Kats, “Eksponentsialy v algebrakh Li kharakteristiki $p$”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 762–788 | MR | Zbl

[11] A. N. Rudakov, I. R. Shafarevich, “Neprivodimye predstavleniya prostoi trekhmernoi algebry Li nad polem konechnoi kharakteristiki”, Matem. zametki, 2:5 (1967), 439–454 | MR | Zbl

[12] I. M. Schepochkina, “Kak realizovat algebru Li vektornymi polyami”, TMF, 147:3 (2006), 450–469 ; arXiv: math.RT/0509472 | MR | Zbl

[13] P. Grozman, D. Leites, “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74:3 (2005), 229–262 ; arXiv: math.RT/0509400 | DOI | MR | Zbl

[14] D. E. Frohardt, R. L. Griess jr., “Automorphisms of modular Lie algebras”, Nova J. Algebra Geom., 1:4 (1992), 339–345 | MR | Zbl

[15] S. Bouarroudj, P. Grozman, D. Leites, Infinitesimal Deformations of Symmetric Simple Modular Lie Algebras and Lie Superalgebras, arXiv: math.RT/0807.3054

[16] D. Fuchs, L. Lang, Massey Products and Deformations, arXiv: math.QA/9602024

[17] A. Fialowski, “An example of formal deformations of Lie algebras”, Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247, Kluwer Acad. Publ., Dordrecht, 1988, 375–401 | MR | Zbl

[18] D. V. Millionshchikov, “Massey products in graded Lie algebra cohomology”, Proceedings of the Conference “Contemporary Geometry and Related Topics” (Belgrad, 2005), Belgrad, 2007

[19] A. Lebedev, D. Leites, I. Shereshevskii, “Lie superalgebra structures in $C^{\bullet}(\mathfrak n;\mathfrak n)$ and $H^{\bullet}(\mathfrak n;\mathfrak n)$”, Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 157–172 ; Lie Superalgebra Structures in Cohomology Spaces of Lie Algebras with Coefficients in the Adjoint Representation, arXiv: math.KT/0404139 | MR | Zbl

[20] P. Grozman, D. Leites, “Lie superalgebra structures in $H^*(\mathfrak g; \mathfrak g)$”, Czechoslovak J. Phys., 54:11 (2004), 1313–1319 ; arXiv: math.RT/0509469 | DOI | MR

[21] P. Grozman, SuperLie, www.equaonline.com/math/SuperLie

[22] I. Cunha, A. Elduque, “An extended Freudenthal magic square in characteristic 3”, J. Algebra, 317:2 (2007), 471–509 ; arXiv: math.RA/0605379 | DOI | MR | Zbl

[23] Yu. V. Billing, “Modulyarnye affinnye algebry Li”, Matem. sb., 181:8 (1990), 1130–1143 | MR | Zbl