Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 808-824

Voir la notice de l'article provenant de la source Math-Net.Ru

All finite-dimensional simple modular Lie algebras with Cartan matrix fail to have deformations, even infinitesimal ones, if the characteristic $p$ of the ground field is equal to $0$ or exceeds $3$. If $p=3$, then the orthogonal Lie algebra $\mathfrak o(5)$ is one of two simple modular Lie algebras with Cartan matrix that do have deformations (the Brown algebras $\mathfrak{br}(2;\alpha)$ appear in this family of deformations of the $10$-dimensional Lie algebras, and therefore are not listed separately); moreover, the $29$-dimensional Brown algebra $\mathfrak{br}(3)$ is the only other simple Lie algebra which has a Cartan matrix and admits a deformation. Kostrikin and Kuznetsov described the orbits (isomorphism classes) under the action of an algebraic group $O(5)$ of automorphisms of the Lie algebra $\mathfrak o(5)$ on the space $H^2(\mathfrak o(5);\mathfrak o(5))$ of infinitesimal deformations and presented representatives of the isomorphism classes. We give here an explicit description of the global deformations of the Lie algebra $\mathfrak o(5)$ and describe the deformations of a simple analog of this orthogonal algebra in characteristic $2$. In characteristic $3$, we have found the representatives of the isomorphism classes of the deformed algebras that linearly depend on the parameter.
Keywords: finite-dimensional simple modular Lie algebra, Brown algebra, infinitesimal deformation, global deformation, Jacobi identity, Massey bracket, Chevalley basis.
Mots-clés : Cartan matrix, Maurer–Cartan equation
@article{MZM_2011_89_6_a1,
     author = {S. Bouarroudj and A. V. Lebedev and F. Vagemann},
     title = {Deformations of the {Lie} {Algebra} $\mathfrak{o}(5)$ in {Characteristics~}$3$ and~$2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {808--824},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/}
}
TY  - JOUR
AU  - S. Bouarroudj
AU  - A. V. Lebedev
AU  - F. Vagemann
TI  - Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 808
EP  - 824
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/
LA  - ru
ID  - MZM_2011_89_6_a1
ER  - 
%0 Journal Article
%A S. Bouarroudj
%A A. V. Lebedev
%A F. Vagemann
%T Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$
%J Matematičeskie zametki
%D 2011
%P 808-824
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/
%G ru
%F MZM_2011_89_6_a1
S. Bouarroudj; A. V. Lebedev; F. Vagemann. Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 808-824. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/