Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_6_a1, author = {S. Bouarroudj and A. V. Lebedev and F. Vagemann}, title = {Deformations of the {Lie} {Algebra} $\mathfrak{o}(5)$ in {Characteristics~}$3$ and~$2$}, journal = {Matemati\v{c}eskie zametki}, pages = {808--824}, publisher = {mathdoc}, volume = {89}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/} }
TY - JOUR AU - S. Bouarroudj AU - A. V. Lebedev AU - F. Vagemann TI - Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$ JO - Matematičeskie zametki PY - 2011 SP - 808 EP - 824 VL - 89 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/ LA - ru ID - MZM_2011_89_6_a1 ER -
S. Bouarroudj; A. V. Lebedev; F. Vagemann. Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics~$3$ and~$2$. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 808-824. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a1/
[1] A. I. Kostrikin, M. I. Kuznetsov, “Deformatsii klassicheskikh algebr Li v kharakteristike tri”, Dokl. RAN, 343:3 (1995), 299–301 | MR | Zbl
[2] A. N. Rudakov, “Deformatsii prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 35:5 (1971), 1113–1119 | MR | Zbl
[3] A. Fialowski, D. Fuchs, “Singular deformations of Lie algebras. Example: deformations of the Lie algeb $L_1$”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 77–92 ; arXiv: math.QA/9706027 | MR | Zbl
[4] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl
[5] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Gruppy Li i algebry Li – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 21, VINITI, M., 1988, 121–209 | MR | Zbl
[6] D. A. Leites, I. M. Schepochkina, “Kak kvantovat antiskobku?”, TMF, 126:3 (2001), 339–369 ; arXiv: math-ph/0510048 | MR | Zbl
[7] S. Bouarroudj, P. Grozman, D. Leites, “Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix”, SIGMA, 5 (2009), 060, 63 pp. ; arXiv: math.RT/0710.5149 | DOI | MR
[8] S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, “Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix”, Homology, Homotopy Appl., 12:1 (2010), 237–278 ; arXiv: math.RT/0911.0243 | MR | Zbl
[9] A. I. Kostrikin, “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34:4 (1970), 744–756 | MR | Zbl
[10] B. Yu. Veisfeiler, V. G. Kats, “Eksponentsialy v algebrakh Li kharakteristiki $p$”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 762–788 | MR | Zbl
[11] A. N. Rudakov, I. R. Shafarevich, “Neprivodimye predstavleniya prostoi trekhmernoi algebry Li nad polem konechnoi kharakteristiki”, Matem. zametki, 2:5 (1967), 439–454 | MR | Zbl
[12] I. M. Schepochkina, “Kak realizovat algebru Li vektornymi polyami”, TMF, 147:3 (2006), 450–469 ; arXiv: math.RT/0509472 | MR | Zbl
[13] P. Grozman, D. Leites, “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74:3 (2005), 229–262 ; arXiv: math.RT/0509400 | DOI | MR | Zbl
[14] D. E. Frohardt, R. L. Griess jr., “Automorphisms of modular Lie algebras”, Nova J. Algebra Geom., 1:4 (1992), 339–345 | MR | Zbl
[15] S. Bouarroudj, P. Grozman, D. Leites, Infinitesimal Deformations of Symmetric Simple Modular Lie Algebras and Lie Superalgebras, arXiv: math.RT/0807.3054
[16] D. Fuchs, L. Lang, Massey Products and Deformations, arXiv: math.QA/9602024
[17] A. Fialowski, “An example of formal deformations of Lie algebras”, Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247, Kluwer Acad. Publ., Dordrecht, 1988, 375–401 | MR | Zbl
[18] D. V. Millionshchikov, “Massey products in graded Lie algebra cohomology”, Proceedings of the Conference “Contemporary Geometry and Related Topics” (Belgrad, 2005), Belgrad, 2007
[19] A. Lebedev, D. Leites, I. Shereshevskii, “Lie superalgebra structures in $C^{\bullet}(\mathfrak n;\mathfrak n)$ and $H^{\bullet}(\mathfrak n;\mathfrak n)$”, Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 157–172 ; Lie Superalgebra Structures in Cohomology Spaces of Lie Algebras with Coefficients in the Adjoint Representation, arXiv: math.KT/0404139 | MR | Zbl
[20] P. Grozman, D. Leites, “Lie superalgebra structures in $H^*(\mathfrak g; \mathfrak g)$”, Czechoslovak J. Phys., 54:11 (2004), 1313–1319 ; arXiv: math.RT/0509469 | DOI | MR
[21] P. Grozman, SuperLie, www.equaonline.com/math/SuperLie
[22] I. Cunha, A. Elduque, “An extended Freudenthal magic square in characteristic 3”, J. Algebra, 317:2 (2007), 471–509 ; arXiv: math.RA/0605379 | DOI | MR | Zbl
[23] Yu. V. Billing, “Modulyarnye affinnye algebry Li”, Matem. sb., 181:8 (1990), 1130–1143 | MR | Zbl