Rigid Isotopy Classification of Real Quadric Line Complexes and Associated Kummer Surfaces
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 705-718.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with rigid isotopy classes of three-dimensional real quadric line complexes and associated Kummer surfaces. We prove that there exist twelve rigid isotopy classes of real quadric line complexes and seven rigid isotopy classes of associated Kummer surfaces. Characteristics determining these rigid isotopy classes are given.
Keywords: quadric line complex, Kummer surface, rigid isotopy class, quadratic, biquadratic, Grassmann variety, Klein quadratic, Plücker coordinates.
@article{MZM_2011_89_5_a6,
     author = {V. A. Krasnov},
     title = {Rigid {Isotopy} {Classification} of {Real} {Quadric} {Line} {Complexes} and {Associated} {Kummer} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {705--718},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Rigid Isotopy Classification of Real Quadric Line Complexes and Associated Kummer Surfaces
JO  - Matematičeskie zametki
PY  - 2011
SP  - 705
EP  - 718
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a6/
LA  - ru
ID  - MZM_2011_89_5_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Rigid Isotopy Classification of Real Quadric Line Complexes and Associated Kummer Surfaces
%J Matematičeskie zametki
%D 2011
%P 705-718
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a6/
%G ru
%F MZM_2011_89_5_a6
V. A. Krasnov. Rigid Isotopy Classification of Real Quadric Line Complexes and Associated Kummer Surfaces. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 705-718. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a6/

[1] M. Reid, The Complete Intersection of Two or More Quadrics, Ph.D. Thesis, 1972 http://www.warwick.ac.uk/~masda/3folds/qu.pdf

[2] A. N. Tyurin, “O peresechenii kvadrik”, UMN, 30:6(186) (1975), 51–99 | MR | Zbl

[3] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR | Zbl

[4] I. V. Dologachev, Topics in Classical Algebraic Geometry http://www.math.lsa.umich.edu/~idolga/topics.pdf

[5] V. A. Rokhlin, “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, UMN, 33:5 (1978), 77–89 | MR | Zbl

[6] W. Fulton, J. Harris, Representation Theory. A First Course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[7] C. M. Jessop, A Treatise on the Line Complex, Cambridge Univ. Press, Cambridge, 1903 | Zbl

[8] V. A. Krasnov, “Veschestvennye trekhmernye bikvadriki”, Izv. RAN. Ser. matem., 74:4 (2010), 119–144 | Zbl

[9] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[10] V. A. Krasnov, “O veschestvennykh kvadratichnykh kompleksakh pryamykh”, Izv. RAN. Ser. matem., 74:6 (2010), 157–182