Stochastic Monotonicity and Duality for One-Dimensional Markov Processes
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 694-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of monotonicity and duality is developed for general one-dimensional Feller processes, extending the approach from [1]. Moreover it is shown that local monotonicity conditions (conditions on the Lévy kernel) are sufficient to prove the well-posedness of the corresponding Markov semigroup and process, including unbounded coefficients and processes on the half-line.
Keywords: stochastic monotonicity, duality, one-dimensional Markov process, Lévy–Kchintchine type generator.
@article{MZM_2011_89_5_a5,
     author = {V. N. Kolokoltsov},
     title = {Stochastic {Monotonicity} and {Duality} for {One-Dimensional} {Markov} {Processes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {694--704},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a5/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
TI  - Stochastic Monotonicity and Duality for One-Dimensional Markov Processes
JO  - Matematičeskie zametki
PY  - 2011
SP  - 694
EP  - 704
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a5/
LA  - ru
ID  - MZM_2011_89_5_a5
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%T Stochastic Monotonicity and Duality for One-Dimensional Markov Processes
%J Matematičeskie zametki
%D 2011
%P 694-704
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a5/
%G ru
%F MZM_2011_89_5_a5
V. N. Kolokoltsov. Stochastic Monotonicity and Duality for One-Dimensional Markov Processes. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 694-704. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a5/

[1] V. N. Kolokoltsov, “Measure-valued limits of interacting particle systems with $k$-nary interactions. I. One-dimensional limits”, Probab. Theory Related Fields, 126:3 (2003), 364–394 | DOI | MR | Zbl

[2] W. J. Anderson, Continuous-Time Markov Chains. An Applications-Oriented Approach, Springer Ser. Statist. Probab. Appl., Springer-Verlag, New York, 1991 | MR | Zbl

[3] J. Conlisk, “Monotone Mobility Matrices”, J. Math. Sociol., 15:3-4 (1990), 173–191 | DOI | MR | Zbl

[4] V. Dardoni, “Monotone Mobility Matrices and Income Distribution”, Social Choice and Welfare, 12 (1995), 181–192

[5] E. Maasoumi, “On Mobility”, Handbook of Applied Economic Statistics, eds. A. Ullah, D. E. A. Giles, Marcel Dekker, New York, 1998, 119–175

[6] O. Kallenberg, Foundations of Modern Probability, Probab. Appl. (N. Y.), Springer-Verlag, New York, 2002 | MR | Zbl

[7] M.-F. Chen, F.-Y. Wang, “On order-preservation and positive correlations for multidimensional diffusion processes”, Probab. Theory Related Fields, 95:3 (1993), 421–428 | DOI | MR | Zbl

[8] A. Chen, H. Zhang, “Stochastic monotonicity and duality for continuous time Markov chains with general $Q$-matrix”, Southeast Asian Bull. Math., 23:3 (1999), 383–408 | MR | Zbl

[9] M.-F. Chen, From Markov Chains to Non-Equilibrium Particle Systems, World Scientific Publ., River Edge, NJ, 2004 | MR | Zbl

[10] Y. Zhang, “Sufficient and necessary conditions for stochastic comparability of jump processes”, Acta Math. Sin. (Engl. Ser.), 16:1 (2000), 99–102 | DOI | MR | Zbl

[11] G. Samorodnitsky, M. S. Taqqu, “Stochastic monotonicity and Slepian-type inequalities for infinitely divisible and stable random vectors”, Ann. Probab., 21:1 (1993), 143–160 | DOI | MR | Zbl

[12] G. Q. Lan, “Stochastic monotonicity and positive correlations of a type of particle systems on Polish spaces”, Acta Math. Sinica (Chin. Ser.), 52:2 (2009), 309–314 | MR | Zbl

[13] J. M. Wang, “Stochastic comparison and preservation of positive correlations for Lévy-type processes”, Acta Math. Sin. (Engl. Ser.), 25:5 (2009), 741–758 | DOI | MR | Zbl

[14] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math., 182, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[15] R. F. Bass, “Uniqueness in law for pure jump Markov processes”, Probab. Theory Related Fields, 79:2 (1988), 271–287 | DOI | MR | Zbl

[16] N. Jacob, Pseudo-differential Operators and Markov Processes, v. I, Fourier Analysis and Semigroups, Imperial College Press, London, 2001 ; v. II, Generators and their Potential Theory, Imperial College Press, London, 2002 ; v. III, Markov Processes and Applications, Imperial College Press, London, 2005 | MR | Zbl | MR | Zbl | MR | Zbl

[17] V. N. Kolokoltsov, “On Markov processes with decomposable pseudo-differential generators”, Stoch. Stoch. Rep., 76:1 (2004), 1–44 | DOI | MR | Zbl

[18] V. N. Kolokoltsov, “The Lévy–Kchintchine type operators with variable Lipschitz continuous coefficients generate linear or nonlinear Markov processes and semigroups”, Probab. Theory Related Fields, 2009, Online First, arXiv: math.PR/0911.5688 | DOI

[19] V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, Monograph, De Gruter, Berlin, 2011 (to appear)

[20] A. Mijatovic, M. Pistorius, Continuously monitored barrier options under Markov processes, arXiv: q-fin.PR/0908.4028

[21] S. N. Ethier, Th. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, New York, 1986 | MR | Zbl

[22] V. N. Kolokoltsov, “Nonlinear Markov semigroups and interacting Lévy type processes”, J. Stat. Phys., 126:3 (2007), 585–642 | DOI | MR | Zbl