Effectivity Properties of Intuitionistic Set Theory with Collection Scheme
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 658-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

Intuitionistic set theory with collection scheme is considered. Its various effectivity properties are proved by using the method of realizability.
Keywords: intuitionistic set theory, two-sorted language, collection scheme, effectivity properties of set theory, Markov's principle, Church's thesis, uniformization principle, Kleene recursive realizability.
@article{MZM_2011_89_5_a2,
     author = {A. G. Vladimirov},
     title = {Effectivity {Properties} of {Intuitionistic} {Set} {Theory} with {Collection} {Scheme}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--672},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a2/}
}
TY  - JOUR
AU  - A. G. Vladimirov
TI  - Effectivity Properties of Intuitionistic Set Theory with Collection Scheme
JO  - Matematičeskie zametki
PY  - 2011
SP  - 658
EP  - 672
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a2/
LA  - ru
ID  - MZM_2011_89_5_a2
ER  - 
%0 Journal Article
%A A. G. Vladimirov
%T Effectivity Properties of Intuitionistic Set Theory with Collection Scheme
%J Matematičeskie zametki
%D 2011
%P 658-672
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a2/
%G ru
%F MZM_2011_89_5_a2
A. G. Vladimirov. Effectivity Properties of Intuitionistic Set Theory with Collection Scheme. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 658-672. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a2/

[1] H. Friedman, “The consistency of classical set theory relative to a set theory with intuitionistic logic”, J. Symbolic Logic, 38:2 (1973), 315–319 | DOI | MR | Zbl

[2] W. C. Powell, “Extending Gödel's negative interpretation to ZF”, The Journal of Symbolic Logic, 40:2 (June 1975), 221–229 | DOI | MR | Zbl

[3] H. Friedman, “Classically and intuitionistically provably recursive functions”, Higher Set Theory, Lecture Notes in Math., 669, Springer-Verlag, Berlin, 1977, 21–27 | DOI | MR | Zbl

[4] R. J. Grayson, “Heyting-valued models for intuitionistic set theory”, Applications of Sheaves, Lecture Notes in Math., 753, Springer-Verlag, Berlin, 1979, 402–414 | DOI | MR | Zbl

[5] J. Myhill, “Some properties of intuitionistic Zermelo–Fraenkel set theory”, Cambridge Summer School in Mathematical Logic, Lecture Notes in Math., 337, Springer-Verlag, Berlin, 1973, 206–231 | DOI | MR | Zbl

[6] H. M. Friedman, A. Ščedrov, “The lack of definable witnesses and provably recursive functions in intuitionistic set theories”, Adv. in Math., 57:1 (1985), 1–13 | DOI | MR | Zbl

[7] V. Kh. Khakhanyan, “Pravilo Markova dopustimo v intuitsionistskoi teorii mnozhestv”, Logicheskie issledovaniya, 3, Nauka, M., 1995, 174–177 | MR

[8] H. Friedman, “Some applications of Kleene's method for intuitionistic systems”, Cambridge Summer School in Mathematical Logic, Lecture Notes in Math., 337, Springer-Verlag, Berlin, 1973, 113–170 | DOI | MR | Zbl

[9] V. Kh. Khakhanyan, “Teoriya mnozhestv i tezis Chercha”, Issledovaniya po teorii mnozhestv i neklassicheskim logikam, Nauka, M., 1979, 198–208

[10] Dzh. Barvais, Spravochnaya kniga po matematicheskoi logike. Ch. 4. Teoriya dokazatelstv i konstruktivnaya matematika, Nauka, M., 1982 | MR | Zbl

[11] M. J. Beeson, “Principles of continuous choice and continuity of functions in formal systems for constructive mathematics”, Ann. Math. Logic, 12:3 (1977), 249–332 | DOI | MR | Zbl

[12] M. Beeson, “Continuity in intuitionistic set theories”, Logic Colloquium '78, Stud. Logic Foundations Math., 97, North-Holland, Amsterdam, 1979, 1–52 | DOI | MR | Zbl

[13] V. Kh. Khakhanyan, “Nezavisimost printsipa dvoinogo dopolneniya ot skhemy sobiraniya v teorii mnozhestv s intuitsionistskoi logikoi”, Logicheskie issledovaniya, 5, Nauka, M., 1998, 160–162 | MR | Zbl

[14] V. Kh. Khakhanyan, “Nezavisimost aksiomy «collection» ot printsipa «DC» v intuitsionistskoi teorii mnozhestv”, Izv. vuzov. Matem., 1993, no. 2, 81–83 | MR | Zbl

[15] V. A. Lyubetskii, “Teoremy perenosa i algebra modalnykh operatorov”, Algebra i logika, 36:3 (1997), 282–303 | MR | Zbl

[16] V. Kh. Khakhanyan, “Nezavisimost chastnogo sluchaya aksiomy vybora v intuitsionistskoi teorii mnozhestv”, UMN, 52:4 (1997), 219–220 | MR | Zbl

[17] A. G. Vladimirov, “Pravilo Chercha v intuitsionistskoi teorii mnozhestv”, Sb. nauchn. trudov Matematicheskogo fakulteta Moskovskogo gorodskogo pedagogicheskogo universiteta, MGPU, M., 2006, 176–190

[18] A. G. Drágalin, Mathematical Intuitionism. Introduction to the Proof Theory, Transl. Math. Monogr., 67, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl