Small Braids with Large Ultra Summit Set
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 577-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1; Open question 2], the following question was posed: Is the size of the ultra summit set of the conjugacy class of a rigid pseudo-Anosov braid bounded above by a polynomial in the braid length and the number of strands? A negative answer to this question is given.
Keywords: braid group, conjugacy problem, ultra summit set, left normal form, Garside element, Birman–Ko–Lee presentation.
Mots-clés : rigid pseudo-Anosov braid
@article{MZM_2011_89_4_a8,
     author = {M. Prasolov},
     title = {Small {Braids} with {Large} {Ultra} {Summit} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--588},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a8/}
}
TY  - JOUR
AU  - M. Prasolov
TI  - Small Braids with Large Ultra Summit Set
JO  - Matematičeskie zametki
PY  - 2011
SP  - 577
EP  - 588
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a8/
LA  - ru
ID  - MZM_2011_89_4_a8
ER  - 
%0 Journal Article
%A M. Prasolov
%T Small Braids with Large Ultra Summit Set
%J Matematičeskie zametki
%D 2011
%P 577-588
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a8/
%G ru
%F MZM_2011_89_4_a8
M. Prasolov. Small Braids with Large Ultra Summit Set. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 577-588. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a8/

[1] J. S. Birman, V. Gebhardt, J. González-Meneses, “Conjugacy in Garside groups I: cyclings, powers and rigidity”, Groups Geom. Dyn., 1:3 (2007), 221–279 | DOI | MR | Zbl

[2] F. A. Garside, “The braid group and other groups”, Quart. J. Math. Oxford Ser. (2), 20:1 (1969), 235–254 | DOI | MR | Zbl

[3] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word Processing in Groups, Jones and Barlett Publ., Boston, MA, 1992 | MR | Zbl

[4] E. A. Elrifai, H. R. Morton, “Algorithms for positive braids”, Quart. J. Math. Oxford Ser. (2), 45:4 (1994), 479–497 | DOI | MR | Zbl

[5] N. Franco, J. González-Meneses, “Conjugacy problem for braid groups and Garside groups”, J. Algebra, 266:1 (2003), 112–132 | DOI | MR | Zbl

[6] V. Gebhardt, “A new approach to the conjugacy problem in Garside groups”, J. Algebra, 292:1 (2005), 282–302 | DOI | MR | Zbl

[7] J. Birman, K. H. Ko, S. J. Lee, “A new approach to the word and conjugacy problems in the braid groups”, Adv. Math., 139:2 (1998), 322–353 | DOI | MR | Zbl

[8] J. S. Birman, V. Gebhardt, J. González-Meneses, “Conjugacy in Garside groups III: periodic braids”, J. Algebra, 316:2 (2007), 746–776 | DOI | MR | Zbl

[9] W. P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.), 19:2 (1988), 417–431 | DOI | MR | Zbl

[10] M. Bestvina, M. Handel, “Train-tracks for surface homeomorphisms”, Topology, 34:1 (1995), 109–140 | DOI | MR | Zbl