Completeness Theorem for Singular Differential Pencils
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 558-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem completeness theorem of special vector functions induced by the products of the so-called Weyl solutions of a fourth-order differential equation and by their derivatives on the semiaxis is presented. We prove that such nonlinear combinations of Weyl solutions and their derivatives constitute a linear subspace of decreasing (at infinity) solutions of a linear singular differential system of Kamke type. We construct and study the Green function of the corresponding singular boundary-value problems on the semiaxis for operator pencils defining differential systems of Kamke type. The required completeness theorem is proved by using the analytic and asymptotic properties of the Green function, operator spectral theory methods, and analytic function theory.
Keywords: singular differential pencil, fourth-order differential equation, Green function, boundary-value problem, operator spectral theory.
Mots-clés : Weyl solution
@article{MZM_2011_89_4_a7,
     author = {D. V. Poplavsky},
     title = {Completeness {Theorem} for {Singular} {Differential} {Pencils}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {558--576},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a7/}
}
TY  - JOUR
AU  - D. V. Poplavsky
TI  - Completeness Theorem for Singular Differential Pencils
JO  - Matematičeskie zametki
PY  - 2011
SP  - 558
EP  - 576
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a7/
LA  - ru
ID  - MZM_2011_89_4_a7
ER  - 
%0 Journal Article
%A D. V. Poplavsky
%T Completeness Theorem for Singular Differential Pencils
%J Matematičeskie zametki
%D 2011
%P 558-576
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a7/
%G ru
%F MZM_2011_89_4_a7
D. V. Poplavsky. Completeness Theorem for Singular Differential Pencils. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 558-576. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a7/

[1] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78:1 (1946), 1–96 | DOI | MR | Zbl

[2] M. G. Gasymov, B. M. Levitan, “O razlozhenii po proizvedeniyam nekotorykh reshenii dvukh uravnenii Shturma–Liuvillya”, Dokl. AN SSSR, 310:4 (1990), 781–784 | MR | Zbl

[3] E. Kh. Khristov, “O razlozheniyakh po proizvedeniyam reshenii dvukh zadach Shturma–Liuvillya na poluosi”, Differents. uravneniya, 16:11 (1980), 2023–2029 | MR | Zbl

[4] E. Kh. Khristov, “On the $\Lambda$-operators associated with two Sturm–Liouville problems on the semi-axis”, Inverse Problems, 14 (1998), 647–660 | DOI | MR | Zbl

[5] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and their Applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[6] V. A. Jurko, “Solution of the Boussinesq equation on the half-line by the inverse problem method”, Inverse Problems, 7:5 (1991), 727–738 | DOI | MR | Zbl

[7] D. V. Poplavskii, “O razreshimosti nachalno-kraevoi zadachi dlya sistemy Bogoyavlenskogo”, Matematika. Mekhanika. Cb. nauch. tr., 7, Izd-vo Sarat. un-ta, Saratov, 2005, 98–101

[8] V. A. Yurko, Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratovskogo ped. in-ta, Saratov, 2001

[9] D. V. Poplavskii, Pryamye i obratnye zadachi spektralnogo analiza i ikh prilozheniya k nelineinym evolyutsionnym operatoram, Dis. ... kand. fiz.-matem. nauk, Sarat. gos. un-t, Saratov, 2006