Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_4_a7, author = {D. V. Poplavsky}, title = {Completeness {Theorem} for {Singular} {Differential} {Pencils}}, journal = {Matemati\v{c}eskie zametki}, pages = {558--576}, publisher = {mathdoc}, volume = {89}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a7/} }
D. V. Poplavsky. Completeness Theorem for Singular Differential Pencils. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 558-576. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a7/
[1] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78:1 (1946), 1–96 | DOI | MR | Zbl
[2] M. G. Gasymov, B. M. Levitan, “O razlozhenii po proizvedeniyam nekotorykh reshenii dvukh uravnenii Shturma–Liuvillya”, Dokl. AN SSSR, 310:4 (1990), 781–784 | MR | Zbl
[3] E. Kh. Khristov, “O razlozheniyakh po proizvedeniyam reshenii dvukh zadach Shturma–Liuvillya na poluosi”, Differents. uravneniya, 16:11 (1980), 2023–2029 | MR | Zbl
[4] E. Kh. Khristov, “On the $\Lambda$-operators associated with two Sturm–Liouville problems on the semi-axis”, Inverse Problems, 14 (1998), 647–660 | DOI | MR | Zbl
[5] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and their Applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl
[6] V. A. Jurko, “Solution of the Boussinesq equation on the half-line by the inverse problem method”, Inverse Problems, 7:5 (1991), 727–738 | DOI | MR | Zbl
[7] D. V. Poplavskii, “O razreshimosti nachalno-kraevoi zadachi dlya sistemy Bogoyavlenskogo”, Matematika. Mekhanika. Cb. nauch. tr., 7, Izd-vo Sarat. un-ta, Saratov, 2005, 98–101
[8] V. A. Yurko, Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratovskogo ped. in-ta, Saratov, 2001
[9] D. V. Poplavskii, Pryamye i obratnye zadachi spektralnogo analiza i ikh prilozheniya k nelineinym evolyutsionnym operatoram, Dis. ... kand. fiz.-matem. nauk, Sarat. gos. un-t, Saratov, 2006