Weighted Identities for the Solutions of Generalized Korteweg--de Vries Equations
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 393-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the Korteweg–de Vries equation $u_t+u_{xxx}+uu_{x}=0$ and its generalization $u_t+u_{xxx}+f(u)_{x}=0$. For the solutions of these equations, weighted identities (differential and integral) are obtained. These identities make it possible to establish the blow-up (in finite time) of the solutions of certain boundary-value problems.
Keywords: Korteweg–de Vries equation, initial boundary-value problem, weighted differential inequality, weighted integral inequality, blow-up of solutions, Hölder's inequality, Young's inequality, Dirichlet boundary condition.
@article{MZM_2011_89_3_a8,
     author = {S. I. Pokhozhaev},
     title = {Weighted {Identities} for the {Solutions} of {Generalized} {Korteweg--de} {Vries} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {393--409},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a8/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - Weighted Identities for the Solutions of Generalized Korteweg--de Vries Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 393
EP  - 409
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a8/
LA  - ru
ID  - MZM_2011_89_3_a8
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T Weighted Identities for the Solutions of Generalized Korteweg--de Vries Equations
%J Matematičeskie zametki
%D 2011
%P 393-409
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a8/
%G ru
%F MZM_2011_89_3_a8
S. I. Pokhozhaev. Weighted Identities for the Solutions of Generalized Korteweg--de Vries Equations. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 393-409. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a8/

[1] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[2] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[3] J. L. Bona, Shu Ming Sun, Bing-Yu Zhang, “A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain”, Comm. Partial Differential Equations, 28:7-8 (2003), 1391–1436 ; “A non-homogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain. II”, J. Differential Equations, 247:9 (2009), 2558–2596 | DOI | MR | Zbl | MR | Zbl

[4] V. A. Bubnov, “Razreshimost v tselom nelineinykh granichnykh zadach dlya uravneniya Kortevega–de Friza v ogranichennoi oblasti”, Differents. uravneniya, 16:1 (1980), 34–41 | MR | Zbl

[5] J. Holmer, “The initial-boundary value problem for the Korteweg–de Vries equation”, Comm. Partial Differential Equations, 31:8 (2006), 1151–1190 | DOI | MR | Zbl

[6] Th. Colin, J.-M. Ghidaglia, “An initial-boundary value problem for the Korteweg–de Vries equation posed on a finite interval”, Adv. Differential Equations, 6:12 (2001), 1463–1492 | MR | Zbl

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, “Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$”, J. Amer. Math. Soc., 16:3 (2003), 705–749 | MR | Zbl

[8] S. I. Pokhozhaev, “O mnogomernykh skalyarnykh zakonakh sokhraneniya”, Matem. sb., 194:1 (2003), 147–160 | MR | Zbl