Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_2_a6, author = {R. V. Ivanov}, title = {Optimal {Stopping} {Problem} in a {Model} with {Compensated} {Refusal} of {Reward}}, journal = {Matemati\v{c}eskie zametki}, pages = {241--248}, publisher = {mathdoc}, volume = {89}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a6/} }
R. V. Ivanov. Optimal Stopping Problem in a Model with Compensated Refusal of Reward. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 241-248. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a6/
[1] A. N. Shiryaev, Statisticheskii posledovatelnyi analiz. Optimalnye pravila ostanovki, Nauka, M., 1976 | MR | Zbl
[2] P. Chalasani, S. Jha, “Randomized stopping times and American option pricing with transaction costs”, Math. Finance, 11:1 (2001), 33–77 | DOI | MR | Zbl
[3] N. El Karoui, I. Karatzas, “A new approach to the Skorohod problem, and its applications”, Stochastics Stochastics Rep., 34:1-2 (1991), 57–82 | MR | Zbl
[4] S. D. Jacka, “Optimal stopping and the American put”, Math. Finance, 1:2 (1991), 1–14 | DOI | Zbl
[5] R. Myneni, “The pricing of the American option”, Ann. Appl. Probab., 2:1 (1992), 1–23 | DOI | MR | Zbl
[6] A. Szimayer, “Valuation of American options in the presence of event risk”, Finance Stoch., 9:1 (2005), 89–107 | DOI | MR | Zbl
[7] A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “K teorii raschetov optsionov evropeiskogo i amerikanskogo tipov. II. Nepreryvnoe vremya”, TVP, 39:1 (1994), 80–129 | MR | Zbl
[8] L. Shepp, A. N. Shiryaev, “The Russian option: reduced regret”, Ann. Appl. Probab., 3:3 (1993), 631–640 | DOI | MR | Zbl
[9] P. van Moerbeke, “On optimal stopping and free boundary problems”, Arch. Rational Mech. Anal., 60:2 (1976), 101–148 | MR | Zbl
[10] N. Bellamy, M. Jeanblanc, “Incompleteness of markets driven by a mixed diffusion”, Finance Stoch., 4:2 (2000), 209–222 | DOI | MR | Zbl
[11] E. Ekström, “Bounds for perpetual American option prices in a jump diffusion model”, J. Appl. Probab., 43:3 (2006), 867–873 | DOI | MR | Zbl
[12] R. V. Ivanov, “On the pricing of American options in exponential Lévy markets”, J. Appl. Probab., 44:2 (2007), 409–419 | DOI | MR | Zbl
[13] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2006 | MR | Zbl
[14] D. M. Salopek, American Put Options, Pitman Monogr. Surveys Pure Appl. Math., 84, Longman, Harlow, 1997 | MR | Zbl
[15] A. N. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998 | MR | Zbl
[16] M. Broadie, J. Detemple, “American option valuation: new bounds, approximations, and a comparison of existing methods”, Rev. Financ. Stud., 9:4 (1996), 1211–1250 | DOI
[17] J. Huang, M. G. Subrahmanyam, G. G. Yu, “Pricing and hedging American options: a recursive investigation method”, Rev. Financ. Stud., 9:1 (1996), 277–300 | DOI
[18] R. V. Ivanov, “Discrete approximation of finite-horizon American-style options”, Lithuanian Math. J., 45:4 (2005), 525–536 | MR | Zbl
[19] R. V. Ivanov, “O diskretnoi approksimatsii optsionov amerikanskogo tipa”, UMN, 61:1 (2006), 179–180 | MR | Zbl
[20] D. Lamberton, “Error estimates for the binomial approximation of American put options”, Ann. Appl. Probab., 8:1 (1998), 206–233 | DOI | MR | Zbl
[21] G. Peskir, “A change-of-variable formula with local time on curves”, J. Theoret. Probab., 18:3 (2005), 499–535 | DOI | MR | Zbl
[22] G. Peskir, “On the American option problem”, Math. Finance, 15:1 (2005), 169–181 | DOI | MR | Zbl
[23] R. V. Ivanov, “O raschetakh optsionov amerikanskogo tipa v modeli s defoltom”, Avtomat. i telemekh., 2007, no. 3, 154–164 | MR | Zbl
[24] V. Linetsky, “Pricing equity derivatives subject to bankruptcy”, Math. Finance, 16:2 (2006), 255–282 | DOI | MR | Zbl