Optimal Stopping Problem in a Model with Compensated Refusal of Reward
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 241-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal stopping problem with a possible compensated refusal of reward. We discuss functionals of exponential Brownian motion. The optimal stopping time is defined on the set of all finite stopping times. The functionals under consideration correspond to payments for standard American options.
Keywords: optimal stopping problem, stopping time, exponential Brownian motion, standard American option, reward function, Itô–Meyer formula, dominated convergence.
@article{MZM_2011_89_2_a6,
     author = {R. V. Ivanov},
     title = {Optimal {Stopping} {Problem} in a {Model} with {Compensated} {Refusal} of {Reward}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {241--248},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a6/}
}
TY  - JOUR
AU  - R. V. Ivanov
TI  - Optimal Stopping Problem in a Model with Compensated Refusal of Reward
JO  - Matematičeskie zametki
PY  - 2011
SP  - 241
EP  - 248
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a6/
LA  - ru
ID  - MZM_2011_89_2_a6
ER  - 
%0 Journal Article
%A R. V. Ivanov
%T Optimal Stopping Problem in a Model with Compensated Refusal of Reward
%J Matematičeskie zametki
%D 2011
%P 241-248
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a6/
%G ru
%F MZM_2011_89_2_a6
R. V. Ivanov. Optimal Stopping Problem in a Model with Compensated Refusal of Reward. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 241-248. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a6/

[1] A. N. Shiryaev, Statisticheskii posledovatelnyi analiz. Optimalnye pravila ostanovki, Nauka, M., 1976 | MR | Zbl

[2] P. Chalasani, S. Jha, “Randomized stopping times and American option pricing with transaction costs”, Math. Finance, 11:1 (2001), 33–77 | DOI | MR | Zbl

[3] N. El Karoui, I. Karatzas, “A new approach to the Skorohod problem, and its applications”, Stochastics Stochastics Rep., 34:1-2 (1991), 57–82 | MR | Zbl

[4] S. D. Jacka, “Optimal stopping and the American put”, Math. Finance, 1:2 (1991), 1–14 | DOI | Zbl

[5] R. Myneni, “The pricing of the American option”, Ann. Appl. Probab., 2:1 (1992), 1–23 | DOI | MR | Zbl

[6] A. Szimayer, “Valuation of American options in the presence of event risk”, Finance Stoch., 9:1 (2005), 89–107 | DOI | MR | Zbl

[7] A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “K teorii raschetov optsionov evropeiskogo i amerikanskogo tipov. II. Nepreryvnoe vremya”, TVP, 39:1 (1994), 80–129 | MR | Zbl

[8] L. Shepp, A. N. Shiryaev, “The Russian option: reduced regret”, Ann. Appl. Probab., 3:3 (1993), 631–640 | DOI | MR | Zbl

[9] P. van Moerbeke, “On optimal stopping and free boundary problems”, Arch. Rational Mech. Anal., 60:2 (1976), 101–148 | MR | Zbl

[10] N. Bellamy, M. Jeanblanc, “Incompleteness of markets driven by a mixed diffusion”, Finance Stoch., 4:2 (2000), 209–222 | DOI | MR | Zbl

[11] E. Ekström, “Bounds for perpetual American option prices in a jump diffusion model”, J. Appl. Probab., 43:3 (2006), 867–873 | DOI | MR | Zbl

[12] R. V. Ivanov, “On the pricing of American options in exponential Lévy markets”, J. Appl. Probab., 44:2 (2007), 409–419 | DOI | MR | Zbl

[13] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[14] D. M. Salopek, American Put Options, Pitman Monogr. Surveys Pure Appl. Math., 84, Longman, Harlow, 1997 | MR | Zbl

[15] A. N. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998 | MR | Zbl

[16] M. Broadie, J. Detemple, “American option valuation: new bounds, approximations, and a comparison of existing methods”, Rev. Financ. Stud., 9:4 (1996), 1211–1250 | DOI

[17] J. Huang, M. G. Subrahmanyam, G. G. Yu, “Pricing and hedging American options: a recursive investigation method”, Rev. Financ. Stud., 9:1 (1996), 277–300 | DOI

[18] R. V. Ivanov, “Discrete approximation of finite-horizon American-style options”, Lithuanian Math. J., 45:4 (2005), 525–536 | MR | Zbl

[19] R. V. Ivanov, “O diskretnoi approksimatsii optsionov amerikanskogo tipa”, UMN, 61:1 (2006), 179–180 | MR | Zbl

[20] D. Lamberton, “Error estimates for the binomial approximation of American put options”, Ann. Appl. Probab., 8:1 (1998), 206–233 | DOI | MR | Zbl

[21] G. Peskir, “A change-of-variable formula with local time on curves”, J. Theoret. Probab., 18:3 (2005), 499–535 | DOI | MR | Zbl

[22] G. Peskir, “On the American option problem”, Math. Finance, 15:1 (2005), 169–181 | DOI | MR | Zbl

[23] R. V. Ivanov, “O raschetakh optsionov amerikanskogo tipa v modeli s defoltom”, Avtomat. i telemekh., 2007, no. 3, 154–164 | MR | Zbl

[24] V. Linetsky, “Pricing equity derivatives subject to bankruptcy”, Math. Finance, 16:2 (2006), 255–282 | DOI | MR | Zbl