Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_2_a11, author = {Yu. G. Rykov}, title = {On the {Generalization} of {Conservation} {Law} {Theory} to {Certain} {Degenerate} {Parabolic} {Systems} of {Equations} {Describing} {Processes} of {Compressible} {Two-Phase} {Multicomponent} {Filtration}}, journal = {Matemati\v{c}eskie zametki}, pages = {300--315}, publisher = {mathdoc}, volume = {89}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/} }
TY - JOUR AU - Yu. G. Rykov TI - On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration JO - Matematičeskie zametki PY - 2011 SP - 300 EP - 315 VL - 89 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/ LA - ru ID - MZM_2011_89_2_a11 ER -
%0 Journal Article %A Yu. G. Rykov %T On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration %J Matematičeskie zametki %D 2011 %P 300-315 %V 89 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/ %G ru %F MZM_2011_89_2_a11
Yu. G. Rykov. On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 300-315. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/
[1] A. I. Brusilovskii, Fazovye prevrascheniya pri razrabotke mestorozhdenii nefti i gaza, Izdatelskii dom Graal, M., 2002
[2] F. M. Orr, jr., Theory of Gas Injection Processes, Tie-Line Publ., Copenhagen, 2007
[3] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984
[4] A. S. Kalashnikov, “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl
[5] B. L. Keyfitz, C. A. Mora, “Prototypes for nonstrict hyperbolicity in conservation laws”, Nonlinear PDE's, dynamics and continuum physics (South Hadley, MA, 1998), Contemp. Math., 255, Amer. Math. Soc., Providence, RI, 2000, 125–137 | MR | Zbl
[6] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conf. Ser. Appl. Math., 11, SIAM, Philadelphia, PA, 1973 | MR | Zbl
[7] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Universitetskaya seriya, 4, Nauchnaya kniga, Novosibirsk, 1998
[8] D. Serre, System of Conservation Laws, v. I, Hyperbolicity, Entropies, Shock Waves, Cambridge Univ. Press, Cambridge, 1999, 2000 ; v. II, Geometric Structures, Oscillations, and Initial-Boundary Value Problems, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl | MR | Zbl
[9] P. G. LeFloch, Hyperbolic Systems of Conservation Laws. The Theory of Classical and Non-classical Shock Waves, Lectures in Math. ETH Zürich, Birkhäuser, Basel, 2002
[10] Yu. B. Radvogin, Kanonicheskaya forma sistemy uravnenii mnogokomponentnoi filtratsii. Giperbolichnost i ustoichivost, Preprint IPM im. M. V. Keldysha No 41, M., 2001
[11] Yu. B. Radvogin, “Kanonicheskaya forma uravnenii dvukhkomponentnoi filtratsii”, Dokl. RAN, 391:3 (2003), 1–4 | MR
[12] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR | Zbl
[13] A. V. Koldoba, E. V. Koldoba, Razryvnye resheniya uravnenii mnogokomponentnoi filtratsii, Preprint IPM im. M. V. Keldysha No 85, M., 1999
[14] A. V. Koldoba, E. V. Koldoba, “Rasprostranenie slabykh razryvov kontsentratsii pri izotermicheskoi filtratsii mnogokomponentnoi smesi s fazovymi perekhodami”, PMM, 71:3 (2007), 477–482 | MR | Zbl
[15] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[16] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., 258, Springer, New York, 1994 | MR | Zbl
[17] I. M. Gelfand, “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl
[18] O. A. Oleinik, “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2 (1959), 165–170 | MR | Zbl
[19] P. G. Bedrikovetskii, R. D. Kanevskaya, M. V. Lure, “Avtomodelnye resheniya zadach dvukhfaznoi filtratsii s uchetom szhimaemosti odnoi iz faz”, MZhG, 1990, no. 1, 71–80 | MR | Zbl
[20] Yu. G. Rykov, O zadache Rimana dlya sistemy uravnenii dvukhkomponentnoi dvukhfaznoi filtratsii v poristykh sredakh v sluchae szhimaemosti obeikh faz, Preprint IPM im. M. V. Keldysha No 59, M., 2007
[21] A. V. Koldoba, E. V. Koldoba, “The discontinuous solutions of the transport equations for compositional flow in porous media”, Transp. Porous Media, 52:2 (2003), 267–277 | DOI | MR
[22] P. Lax, “Shock waves and entropy”, Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 603–634 | MR | Zbl