On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 300-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

A degenerate parabolic system of equations of two-phase multicomponent filtration is considered. It is shown that this system can be treated as a system of conservation laws and the notions developed in the corresponding theory, such as hyperbolicity, shock waves, Hugoniot relations, stability conditions, Riemann problem, entropy, etc., can be applied to this system. The specific character of the use of such notions in the case of multicomponent filtration is demonstrated. An example of two-component mixture is used to describe the specific properties of solutions of the Riemann problem.
Keywords: degenerate parabolic system of equations, two-phase multicomponent filtration, conservation laws, Riemann problem, entropy, Darcy's law
Mots-clés : Hugoniot relation.
@article{MZM_2011_89_2_a11,
     author = {Yu. G. Rykov},
     title = {On the {Generalization} of {Conservation} {Law} {Theory} to {Certain} {Degenerate} {Parabolic} {Systems} of {Equations} {Describing} {Processes} of {Compressible} {Two-Phase} {Multicomponent} {Filtration}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {300--315},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/}
}
TY  - JOUR
AU  - Yu. G. Rykov
TI  - On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration
JO  - Matematičeskie zametki
PY  - 2011
SP  - 300
EP  - 315
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/
LA  - ru
ID  - MZM_2011_89_2_a11
ER  - 
%0 Journal Article
%A Yu. G. Rykov
%T On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration
%J Matematičeskie zametki
%D 2011
%P 300-315
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/
%G ru
%F MZM_2011_89_2_a11
Yu. G. Rykov. On the Generalization of Conservation Law Theory to Certain Degenerate Parabolic Systems of Equations Describing Processes of Compressible Two-Phase Multicomponent Filtration. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 300-315. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a11/

[1] A. I. Brusilovskii, Fazovye prevrascheniya pri razrabotke mestorozhdenii nefti i gaza, Izdatelskii dom Graal, M., 2002

[2] F. M. Orr, jr., Theory of Gas Injection Processes, Tie-Line Publ., Copenhagen, 2007

[3] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984

[4] A. S. Kalashnikov, “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[5] B. L. Keyfitz, C. A. Mora, “Prototypes for nonstrict hyperbolicity in conservation laws”, Nonlinear PDE's, dynamics and continuum physics (South Hadley, MA, 1998), Contemp. Math., 255, Amer. Math. Soc., Providence, RI, 2000, 125–137 | MR | Zbl

[6] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conf. Ser. Appl. Math., 11, SIAM, Philadelphia, PA, 1973 | MR | Zbl

[7] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Universitetskaya seriya, 4, Nauchnaya kniga, Novosibirsk, 1998

[8] D. Serre, System of Conservation Laws, v. I, Hyperbolicity, Entropies, Shock Waves, Cambridge Univ. Press, Cambridge, 1999, 2000 ; v. II, Geometric Structures, Oscillations, and Initial-Boundary Value Problems, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl | MR | Zbl

[9] P. G. LeFloch, Hyperbolic Systems of Conservation Laws. The Theory of Classical and Non-classical Shock Waves, Lectures in Math. ETH Zürich, Birkhäuser, Basel, 2002

[10] Yu. B. Radvogin, Kanonicheskaya forma sistemy uravnenii mnogokomponentnoi filtratsii. Giperbolichnost i ustoichivost, Preprint IPM im. M. V. Keldysha No 41, M., 2001

[11] Yu. B. Radvogin, “Kanonicheskaya forma uravnenii dvukhkomponentnoi filtratsii”, Dokl. RAN, 391:3 (2003), 1–4 | MR

[12] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR | Zbl

[13] A. V. Koldoba, E. V. Koldoba, Razryvnye resheniya uravnenii mnogokomponentnoi filtratsii, Preprint IPM im. M. V. Keldysha No 85, M., 1999

[14] A. V. Koldoba, E. V. Koldoba, “Rasprostranenie slabykh razryvov kontsentratsii pri izotermicheskoi filtratsii mnogokomponentnoi smesi s fazovymi perekhodami”, PMM, 71:3 (2007), 477–482 | MR | Zbl

[15] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl

[16] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., 258, Springer, New York, 1994 | MR | Zbl

[17] I. M. Gelfand, “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl

[18] O. A. Oleinik, “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2 (1959), 165–170 | MR | Zbl

[19] P. G. Bedrikovetskii, R. D. Kanevskaya, M. V. Lure, “Avtomodelnye resheniya zadach dvukhfaznoi filtratsii s uchetom szhimaemosti odnoi iz faz”, MZhG, 1990, no. 1, 71–80 | MR | Zbl

[20] Yu. G. Rykov, O zadache Rimana dlya sistemy uravnenii dvukhkomponentnoi dvukhfaznoi filtratsii v poristykh sredakh v sluchae szhimaemosti obeikh faz, Preprint IPM im. M. V. Keldysha No 59, M., 2007

[21] A. V. Koldoba, E. V. Koldoba, “The discontinuous solutions of the transport equations for compositional flow in porous media”, Transp. Porous Media, 52:2 (2003), 267–277 | DOI | MR

[22] P. Lax, “Shock waves and entropy”, Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 603–634 | MR | Zbl