New Estimate in Vinogradov's Mean-Value Theorem
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 285-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

We refine the upper bound for the Vinogradov integral.
Keywords: Vinogradov's mean-value theorem, Vinogradov integral, Weyl sum, exponential sums, Waring's problem, Riemann zeta function.
Mots-clés : Diophantine equation
@article{MZM_2011_89_2_a10,
     author = {S. N. Preobrazhenskii},
     title = {New {Estimate} in {Vinogradov's} {Mean-Value} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--299},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a10/}
}
TY  - JOUR
AU  - S. N. Preobrazhenskii
TI  - New Estimate in Vinogradov's Mean-Value Theorem
JO  - Matematičeskie zametki
PY  - 2011
SP  - 285
EP  - 299
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a10/
LA  - ru
ID  - MZM_2011_89_2_a10
ER  - 
%0 Journal Article
%A S. N. Preobrazhenskii
%T New Estimate in Vinogradov's Mean-Value Theorem
%J Matematičeskie zametki
%D 2011
%P 285-299
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a10/
%G ru
%F MZM_2011_89_2_a10
S. N. Preobrazhenskii. New Estimate in Vinogradov's Mean-Value Theorem. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 285-299. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a10/

[1] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR | Zbl

[2] S. B. Stechkin, “O srednikh znacheniyakh modulya trigonometricheskoi summy”, Teoriya funktsii i ee prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Sergeyu Mikhailovichu Nikolskomu k ego semidesyatiletiyu, Tr. MIAN SSSR, 134, 1975, 283–309 | MR | Zbl

[3] G. I. Arkhipov, A. A. Karatsuba, “Novaya otsenka integrala I. M. Vinogradova”, Izv. AN SSSR. Ser. matem., 42:4 (1978), 751–762 | MR | Zbl

[4] O. V. Tyrina, “Novaya otsenka trigonometricheskogo integrala I. M. Vinogradova”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 363–378 | MR | Zbl

[5] T. D. Wooley, “Quasi-diagonal behaviour in certain mean value theorems of additive number theory”, J. Amer. Math. Soc., 7:1 (1994), 221–245 | MR | Zbl

[6] T. D. Wooley, “On Vinogradov's mean value theorem”, Mathematika, 39:2 (1992), 379–399 | DOI | MR | Zbl

[7] K. Ford, “Vinogradov's integral and bounds for the Riemann zeta function”, Proc. London Math. Soc. (3), 85:3 (2002), 565–633 | DOI | MR | Zbl