Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_2_a10, author = {S. N. Preobrazhenskii}, title = {New {Estimate} in {Vinogradov's} {Mean-Value} {Theorem}}, journal = {Matemati\v{c}eskie zametki}, pages = {285--299}, publisher = {mathdoc}, volume = {89}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a10/} }
S. N. Preobrazhenskii. New Estimate in Vinogradov's Mean-Value Theorem. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 285-299. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a10/
[1] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR | Zbl
[2] S. B. Stechkin, “O srednikh znacheniyakh modulya trigonometricheskoi summy”, Teoriya funktsii i ee prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Sergeyu Mikhailovichu Nikolskomu k ego semidesyatiletiyu, Tr. MIAN SSSR, 134, 1975, 283–309 | MR | Zbl
[3] G. I. Arkhipov, A. A. Karatsuba, “Novaya otsenka integrala I. M. Vinogradova”, Izv. AN SSSR. Ser. matem., 42:4 (1978), 751–762 | MR | Zbl
[4] O. V. Tyrina, “Novaya otsenka trigonometricheskogo integrala I. M. Vinogradova”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 363–378 | MR | Zbl
[5] T. D. Wooley, “Quasi-diagonal behaviour in certain mean value theorems of additive number theory”, J. Amer. Math. Soc., 7:1 (1994), 221–245 | MR | Zbl
[6] T. D. Wooley, “On Vinogradov's mean value theorem”, Mathematika, 39:2 (1992), 379–399 | DOI | MR | Zbl
[7] K. Ford, “Vinogradov's integral and bounds for the Riemann zeta function”, Proc. London Math. Soc. (3), 85:3 (2002), 565–633 | DOI | MR | Zbl