On the Self-Adjoint Subspace of the One-Velocity Transport Operator
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 91-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of describing the self-adjoint subspace of the transport operator in an unbounded domain. It is proved that this subspace is nontrivial under perturbations having a gap lattice of arbitrarily small length for the one-velocity operator with polynomial collision integral. We also consider the three-dimensional transport operator.
Keywords: transport operator, collision integral, self-adjoint subspace
Mots-clés : Lebesgue spectrum, isomorphism.
@article{MZM_2011_89_1_a8,
     author = {R. V. Romanov and M. A. Tikhomirov},
     title = {On the {Self-Adjoint} {Subspace} of the {One-Velocity} {Transport} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--103},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a8/}
}
TY  - JOUR
AU  - R. V. Romanov
AU  - M. A. Tikhomirov
TI  - On the Self-Adjoint Subspace of the One-Velocity Transport Operator
JO  - Matematičeskie zametki
PY  - 2011
SP  - 91
EP  - 103
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a8/
LA  - ru
ID  - MZM_2011_89_1_a8
ER  - 
%0 Journal Article
%A R. V. Romanov
%A M. A. Tikhomirov
%T On the Self-Adjoint Subspace of the One-Velocity Transport Operator
%J Matematičeskie zametki
%D 2011
%P 91-103
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a8/
%G ru
%F MZM_2011_89_1_a8
R. V. Romanov; M. A. Tikhomirov. On the Self-Adjoint Subspace of the One-Velocity Transport Operator. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 91-103. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a8/