On the Self-Adjoint Subspace of the One-Velocity Transport Operator
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 91-103
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of describing the self-adjoint subspace of the transport operator in an unbounded domain. It is proved that this subspace is nontrivial under perturbations having a gap lattice of arbitrarily small length for the one-velocity operator with polynomial collision integral. We also consider the three-dimensional transport operator.
Keywords:
transport operator, collision integral, self-adjoint subspace
Mots-clés : Lebesgue spectrum, isomorphism.
Mots-clés : Lebesgue spectrum, isomorphism.
@article{MZM_2011_89_1_a8,
author = {R. V. Romanov and M. A. Tikhomirov},
title = {On the {Self-Adjoint} {Subspace} of the {One-Velocity} {Transport} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {91--103},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a8/}
}
R. V. Romanov; M. A. Tikhomirov. On the Self-Adjoint Subspace of the One-Velocity Transport Operator. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 91-103. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a8/