Ideals Generated by Reverse Lexicographic Segments
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 53-69

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field, and let $S=k[x_1,\dots,x_n]$ be the polynomial ring in $x_1,\dots,x_n$ with coefficients in the field $k$. We study ideals of $S$ which are generated by reverse lexicographic segments of monomials of $S$. An ideal generated by a reverse lexicographic segment is called a completely reverse lexicographic segment ideal if all iterated shadows of the set of generators are reverse lexicographic segments. We characterize all completely reverse lexicographic segment ideals of $S$ and determine conditions under which they have a linear resolution.
Keywords: polynomial ring, ideal, reverse lexicographic segment, iterated shadow, linear resolution.
@article{MZM_2011_89_1_a5,
     author = {M. Crupi and M. La Barbiera},
     title = {Ideals {Generated} by {Reverse} {Lexicographic} {Segments}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {53--69},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a5/}
}
TY  - JOUR
AU  - M. Crupi
AU  - M. La Barbiera
TI  - Ideals Generated by Reverse Lexicographic Segments
JO  - Matematičeskie zametki
PY  - 2011
SP  - 53
EP  - 69
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a5/
LA  - ru
ID  - MZM_2011_89_1_a5
ER  - 
%0 Journal Article
%A M. Crupi
%A M. La Barbiera
%T Ideals Generated by Reverse Lexicographic Segments
%J Matematičeskie zametki
%D 2011
%P 53-69
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a5/
%G ru
%F MZM_2011_89_1_a5
M. Crupi; M. La Barbiera. Ideals Generated by Reverse Lexicographic Segments. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a5/