Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_1_a5, author = {M. Crupi and M. La Barbiera}, title = {Ideals {Generated} by {Reverse} {Lexicographic} {Segments}}, journal = {Matemati\v{c}eskie zametki}, pages = {53--69}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a5/} }
M. Crupi; M. La Barbiera. Ideals Generated by Reverse Lexicographic Segments. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a5/
[1] H. Hulett, H. M. Martin, “Betti numbers of lex-segment ideals”, J. Algebra, 275:2 (2004), 629–638 | DOI | MR | Zbl
[2] A. Aramova, E. De Negri, J. Herzog, “Lexsegment ideals with linear resolution”, Illinois J. Math., 42:3 (1998), 509–523 | MR | Zbl
[3] E. De Negri, J. Herzog, “Completely lexsegment ideals”, Proc. Amer. Math. Soc., 126:12 (1998), 3467–3473 | DOI | MR | Zbl
[4] F. S. Macaulay, “Some properties of enumerations in the theory of modular systems”, Proc. London Math. Soc. (2), 26:1 (1927), 531–555 | DOI | Zbl
[5] D. Bayer, M. Stillman, “A theorem on refining division orders by the reverse lexicographic order”, Duke Math. J., 55:2 (1987), 321–328 | DOI | MR | Zbl
[6] D. Bayer, M. Stillman, “A criterion for detecting $m$-regularity”, Invent. Math., 87:1 (1987), 1–11 | DOI | MR | Zbl
[7] T. Deery, “Rev-lex segment ideals and minimal Betti numbers”, The Curves Seminar at Queen's (Kingston, ON, 1995), v. X, Queen's Papers in Pure and Appl. Math., 102, Queen's Univ., Kingston, ON, 1996, 193–219 | MR | Zbl
[8] A. Aramova, J. Herzog, “Koszul cycles and Eliahou–Kervaire type resolutions”, J. Algebra, 181:2 (1996), 347–370 | DOI | MR | Zbl
[9] S. Eliahou, M. Kervaire, “Minimal resolutions of some monomial ideals”, J. Algebra, 129:1 (1990), 1–25 | DOI | MR | Zbl
[10] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl
[11] M. Crupi, M. La Barbiera, Minimal Graded Resolutions of Reverse Lexsegment Ideals, Preprint, 2009