Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 19-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we discuss the notion of reducibility of solutions of the Euler form generalizing solutions arising from the Laplace cascade method for integrating second-order hyperbolic equations in the plane. We present reduction algorithms and prove the equivalence of various possible exact definitions of the reduction of similar explicit solutions.
Keywords: Euler integral and multi-integral, linear partial differential equation, Laplace cascade integration method, reduction algorithm.
@article{MZM_2011_89_1_a2,
     author = {E. I. Ganzha},
     title = {Euler {Integrals} and {Multi-Integrals} of {Linear} {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--33},
     year = {2011},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/}
}
TY  - JOUR
AU  - E. I. Ganzha
TI  - Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 19
EP  - 33
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/
LA  - ru
ID  - MZM_2011_89_1_a2
ER  - 
%0 Journal Article
%A E. I. Ganzha
%T Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
%J Matematičeskie zametki
%D 2011
%P 19-33
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/
%G ru
%F MZM_2011_89_1_a2
E. I. Ganzha. Euler Integrals and Multi-Integrals of Linear Partial Differential Equations. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/

[1] A. R. Forsyth, Theory of Differential Equations. Part IV. Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1906 | MR | Zbl

[2] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, II Partie, Gauthier-Villars, Paris, 1889 | MR | Zbl

[3] É. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du seconde ordre à deux variables indépendants, Tome II, A. Hermann, Paris, 1898 | Zbl

[4] A. V. Zhiber, S. Ya. Startsev, “Integraly, resheniya i suschestvovanie preobrazovanii Laplasa lineinoi giperbolicheskoi sistemy uravnenii”, Matem. zametki, 74:6 (2003), 848–857 | MR | Zbl

[5] S. Ya. Startsev, “Metod kaskadnogo integrirovaniya Laplasa dlya lineinykh giperbolicheskikh sistem uravnenii”, Matem. zametki, 83:1 (2008), 107–118 | MR | Zbl

[6] C. Athorne, “A $\mathbf Z^2\times\mathbf R^3$ Toda system”, Phys. Lett. A, 206:3-4 (1995), 162–166 | DOI | MR | Zbl

[7] S. P. Tsarev, “Generalized Laplace transformations and integration of hyperbolic systems of linear partial differential equations”, ISSAC'2005 (July 24–27, 2005, Beijing, China), ACM Press, New York, 2005, 325–331, arXiv: cs.SC/0501030 | MR

[8] I. A. Taimanov, S. P. Tsarev, “Dvumernye operatory Shrëdingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, UMN, 62:3 (2007), 217–218 | MR | Zbl

[9] E. I. Ganzha, V. M. Loginov, S. P. Tsarev, “Exact solutions of hyperbolic systems of kinetic equations. Application to Verhulst model with random perturbation”, Math. Comput. Sci., 1:3 (2008), 459–472, arXiv: math.AP/0612793 | MR | Zbl

[10] L. Eiler, Integralnoe ischislenie, v. 3, GIFML, M., 1958

[11] J. Le Roux, “Extensions de la méthode de Laplace aux équations linéaires aux dérivées partielles d'ordre supérieur au second”, Bull. Soc. Math. France, 27 (1899), 237–262 | MR | Zbl

[12] L. Petrén, “Extension de la méthode de Laplace aux équations $\sum_{i=0}^{n-1}A_{1i}\partial^{i+1}z/\partial x\partial y^i +\sum_{i=0}^{n}A_{0i}\partial^{i}z/\partial y^i=0$”, Lunds Univ. Årsskrift, 7:3 (1911), 1–166 | Zbl

[13] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | MR | Zbl

[14] I. M. Anderson, N. Kamran, “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[15] N. Dzhekobson, Teoriya kolets, IL, M., 1947 | MR | Zbl

[16] Ya. B. Lopatinskii, Lineinye differentsialnye operatory, Dis. $\dots$ dokt. fiz.-matem. nauk, Baku, 1946; Я. Б. Лопатинский, Теория общих граничных задач, Наукова думка, Киев, 1984 | MR