Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the notion of reducibility of solutions of the Euler form generalizing solutions arising from the Laplace cascade method for integrating second-order hyperbolic equations in the plane. We present reduction algorithms and prove the equivalence of various possible exact definitions of the reduction of similar explicit solutions.
Keywords: Euler integral and multi-integral, linear partial differential equation, Laplace cascade integration method, reduction algorithm.
@article{MZM_2011_89_1_a2,
     author = {E. I. Ganzha},
     title = {Euler {Integrals} and {Multi-Integrals} of {Linear} {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/}
}
TY  - JOUR
AU  - E. I. Ganzha
TI  - Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 19
EP  - 33
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/
LA  - ru
ID  - MZM_2011_89_1_a2
ER  - 
%0 Journal Article
%A E. I. Ganzha
%T Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
%J Matematičeskie zametki
%D 2011
%P 19-33
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/
%G ru
%F MZM_2011_89_1_a2
E. I. Ganzha. Euler Integrals and Multi-Integrals of Linear Partial Differential Equations. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/

[1] A. R. Forsyth, Theory of Differential Equations. Part IV. Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1906 | MR | Zbl

[2] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, II Partie, Gauthier-Villars, Paris, 1889 | MR | Zbl

[3] É. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du seconde ordre à deux variables indépendants, Tome II, A. Hermann, Paris, 1898 | Zbl

[4] A. V. Zhiber, S. Ya. Startsev, “Integraly, resheniya i suschestvovanie preobrazovanii Laplasa lineinoi giperbolicheskoi sistemy uravnenii”, Matem. zametki, 74:6 (2003), 848–857 | MR | Zbl

[5] S. Ya. Startsev, “Metod kaskadnogo integrirovaniya Laplasa dlya lineinykh giperbolicheskikh sistem uravnenii”, Matem. zametki, 83:1 (2008), 107–118 | MR | Zbl

[6] C. Athorne, “A $\mathbf Z^2\times\mathbf R^3$ Toda system”, Phys. Lett. A, 206:3-4 (1995), 162–166 | DOI | MR | Zbl

[7] S. P. Tsarev, “Generalized Laplace transformations and integration of hyperbolic systems of linear partial differential equations”, ISSAC'2005 (July 24–27, 2005, Beijing, China), ACM Press, New York, 2005, 325–331, arXiv: cs.SC/0501030 | MR

[8] I. A. Taimanov, S. P. Tsarev, “Dvumernye operatory Shrëdingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, UMN, 62:3 (2007), 217–218 | MR | Zbl

[9] E. I. Ganzha, V. M. Loginov, S. P. Tsarev, “Exact solutions of hyperbolic systems of kinetic equations. Application to Verhulst model with random perturbation”, Math. Comput. Sci., 1:3 (2008), 459–472, arXiv: math.AP/0612793 | MR | Zbl

[10] L. Eiler, Integralnoe ischislenie, v. 3, GIFML, M., 1958

[11] J. Le Roux, “Extensions de la méthode de Laplace aux équations linéaires aux dérivées partielles d'ordre supérieur au second”, Bull. Soc. Math. France, 27 (1899), 237–262 | MR | Zbl

[12] L. Petrén, “Extension de la méthode de Laplace aux équations $\sum_{i=0}^{n-1}A_{1i}\partial^{i+1}z/\partial x\partial y^i +\sum_{i=0}^{n}A_{0i}\partial^{i}z/\partial y^i=0$”, Lunds Univ. Årsskrift, 7:3 (1911), 1–166 | Zbl

[13] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | MR | Zbl

[14] I. M. Anderson, N. Kamran, “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[15] N. Dzhekobson, Teoriya kolets, IL, M., 1947 | MR | Zbl

[16] Ya. B. Lopatinskii, Lineinye differentsialnye operatory, Dis. $\dots$ dokt. fiz.-matem. nauk, Baku, 1946; Я. Б. Лопатинский, Теория общих граничных задач, Наукова думка, Киев, 1984 | MR