Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 19-33

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the notion of reducibility of solutions of the Euler form generalizing solutions arising from the Laplace cascade method for integrating second-order hyperbolic equations in the plane. We present reduction algorithms and prove the equivalence of various possible exact definitions of the reduction of similar explicit solutions.
Keywords: Euler integral and multi-integral, linear partial differential equation, Laplace cascade integration method, reduction algorithm.
@article{MZM_2011_89_1_a2,
     author = {E. I. Ganzha},
     title = {Euler {Integrals} and {Multi-Integrals} of {Linear} {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/}
}
TY  - JOUR
AU  - E. I. Ganzha
TI  - Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 19
EP  - 33
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/
LA  - ru
ID  - MZM_2011_89_1_a2
ER  - 
%0 Journal Article
%A E. I. Ganzha
%T Euler Integrals and Multi-Integrals of Linear Partial Differential Equations
%J Matematičeskie zametki
%D 2011
%P 19-33
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/
%G ru
%F MZM_2011_89_1_a2
E. I. Ganzha. Euler Integrals and Multi-Integrals of Linear Partial Differential Equations. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a2/