Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 12-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a compact right-angled polyhedron $R$ in Lobachevskii space $\mathbb H^3$, let $\operatorname{vol}(R)$ denote its volume and $\operatorname{vert}(R)$, the number of its vertices. Upper and lower bounds for $\operatorname{vol}(R)$ were recently obtained by Atkinson in terms of $\operatorname{vert}(R)$. In constructing a two-parameter family of polyhedra, we show that the asymptotic upper bound $5v_3/8$, where $v_3$ is the volume of the ideal regular tetrahedron in $\mathbb H^3$, is a double limit point for the ratios $\operatorname{vol}(R)/\operatorname{vert}(R)$. Moreover, we improve the lower bound in the case $\operatorname{vert}(R)\le 56$.
Keywords: right-angled hyperbolic polyhedron, volume estimate for hyperbolic polyhedra, Lobachevskii space, Löbell polyhedron, dodecahedron.
@article{MZM_2011_89_1_a1,
     author = {A. Yu. Vesnin and D. Repov\v{s}},
     title = {Two-Sided {Bounds} for the {Volume} of {Right-Angled} {Hyperbolic} {Polyhedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - D. Repovš
TI  - Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
JO  - Matematičeskie zametki
PY  - 2011
SP  - 12
EP  - 18
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/
LA  - ru
ID  - MZM_2011_89_1_a1
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A D. Repovš
%T Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
%J Matematičeskie zametki
%D 2011
%P 12-18
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/
%G ru
%F MZM_2011_89_1_a1
A. Yu. Vesnin; D. Repovš. Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 12-18. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/

[1] A. V. Pogorelov, “O pravilnom razbienii prostranstva Lobachevskogo”, Matem. zametki, 1:1 (1967), 3–8 | MR | Zbl

[2] A. Yu. Vesnin, “Trekhmernye giperbolicheskie mnogoobraziya tipa Lebellya”, Sib. matem. zhurn., 28:5 (1987), 50–53 | MR | Zbl

[3] T. Inoue, “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geom. Topol., 8:3 (2008), 1523–1565 | DOI | MR | Zbl

[4] C. K. Atkinson, “Volume estimates for equiangular hyperbolic Coxeter polyhedra”, Algebr. Geom. Topol., 9:2 (2009), 1225–1254 | DOI | MR | Zbl

[5] F. Löbell, “Beispiele geschlossener dreidimensionaler Clifford–Kleinscher Räume negativer Krümmung”, Ber. Verh. Sächs. Akad. Leipzig, 83 (1931), 167–174 | Zbl

[6] E. M. Andreev, “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl

[7] A. Yu. Vesnin, “Ob'emy trekhmernykh giperbolicheskikh mnogoobrazii Lebellya”, Matem. zametki, 64:1 (1998), 17–23 | MR | Zbl

[8] A. D. Mednykh, A. Yu. Vesnin, “Löbell manifolds revised”, Sib. elektron. matem. izv., 4 (2007), 605–609 | MR | Zbl

[9] O. Antolín-Camarena, G. R. Maloney, R. K. W. Roeder, “Computing arithmetic invariants for hyperbolic reflection groups”, Complex Dynamics. Families and Friends, A. K. Peters, Wellesley, MA, 2008, 597–631 | MR | Zbl

[10] A. Yu. Vesnin, A. D. Mednykh, “Trekhmernye giperellipticheskie mnogoobraziya i gamiltonovy grafy”, Sib. matem. zhurn., 40:4 (1999), 745–763 | MR | Zbl

[11] A. Yu. Vesnin, S. V. Matveev, K. Petronio, “Dvustoronnie otsenki slozhnosti mnogoobrazii Lebellya”, Dokl. RAN, 416:3 (2007), 295–297 | MR | Zbl

[12] S. Matveev, C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl