Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 12-18

Voir la notice de l'article provenant de la source Math-Net.Ru

For a compact right-angled polyhedron $R$ in Lobachevskii space $\mathbb H^3$, let $\operatorname{vol}(R)$ denote its volume and $\operatorname{vert}(R)$, the number of its vertices. Upper and lower bounds for $\operatorname{vol}(R)$ were recently obtained by Atkinson in terms of $\operatorname{vert}(R)$. In constructing a two-parameter family of polyhedra, we show that the asymptotic upper bound $5v_3/8$, where $v_3$ is the volume of the ideal regular tetrahedron in $\mathbb H^3$, is a double limit point for the ratios $\operatorname{vol}(R)/\operatorname{vert}(R)$. Moreover, we improve the lower bound in the case $\operatorname{vert}(R)\le 56$.
Keywords: right-angled hyperbolic polyhedron, volume estimate for hyperbolic polyhedra, Lobachevskii space, Löbell polyhedron, dodecahedron.
@article{MZM_2011_89_1_a1,
     author = {A. Yu. Vesnin and D. Repov\v{s}},
     title = {Two-Sided {Bounds} for the {Volume} of {Right-Angled} {Hyperbolic} {Polyhedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - D. Repovš
TI  - Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
JO  - Matematičeskie zametki
PY  - 2011
SP  - 12
EP  - 18
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/
LA  - ru
ID  - MZM_2011_89_1_a1
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A D. Repovš
%T Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
%J Matematičeskie zametki
%D 2011
%P 12-18
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/
%G ru
%F MZM_2011_89_1_a1
A. Yu. Vesnin; D. Repovš. Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 12-18. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a1/