An Infinite Algebraic System in the Irregular Case
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sufficient conditions for the nontrivial solvability of systems of the form
$$
\varphi_i=b_i+\lambda_i\sum^\infty_{j=0} a_{i-j}\varphi_j,\qquad
i\in\mathbb Z_+\overset{\text{def}}{=}\{0,1,2,\dots,n,\ldots\},
$$
and of the corresponding homogeneous systems. It is assumed that the sequences $b=(b_0,b_1,b_2,\ldots)$ and $\lambda=(\lambda_0,\lambda_1,\lambda_2,\ldots)$ and the Toeplitz matrix $A=(a_{i-j})$ satisfy the conditions
\begin{gather*}
a_j\ge 0,\quad j\in {\mathbb Z},\qquad \sum^\infty_{j=-\infty}a_j=1,\qquad \sum^\infty_{j=-\infty}|j|a_j\infty,\qquad \sum^\infty_{j=-\infty}ja_j0,
\\
b_j\ge 0,\quad j\in {\mathbb Z}_+,\qquad \sum^\infty_{j=0}b_j\infty,\qquad 1\le\lambda_i\le
\biggl(\,\sum^i_{j=-\infty}a_j\biggr)^{-1},\quad i\in {\mathbb Z_+}.
\end{gather*}
Under these conditions, we construct bounded solutions of homogeneous and inhomogeneous systems of the form indicated above.
Keywords:
algebraic system, co-conservative system, Toeplitz matrix, Wiener–Hopf equation.
@article{MZM_2011_89_1_a0,
author = {L. G. Arabadzhyan},
title = {An {Infinite} {Algebraic} {System} in the {Irregular} {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--11},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a0/}
}
L. G. Arabadzhyan. An Infinite Algebraic System in the Irregular Case. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a0/