An Infinite Algebraic System in the Irregular Case
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the nontrivial solvability of systems of the form $$ \varphi_i=b_i+\lambda_i\sum^\infty_{j=0} a_{i-j}\varphi_j,\qquad i\in\mathbb Z_+\overset{\text{def}}{=}\{0,1,2,\dots,n,\ldots\}, $$ and of the corresponding homogeneous systems. It is assumed that the sequences $b=(b_0,b_1,b_2,\ldots)$ and $\lambda=(\lambda_0,\lambda_1,\lambda_2,\ldots)$ and the Toeplitz matrix $A=(a_{i-j})$ satisfy the conditions \begin{gather*} a_j\ge 0,\quad j\in {\mathbb Z},\qquad \sum^\infty_{j=-\infty}a_j=1,\qquad \sum^\infty_{j=-\infty}|j|a_j\infty,\qquad \sum^\infty_{j=-\infty}ja_j0, \\ b_j\ge 0,\quad j\in {\mathbb Z}_+,\qquad \sum^\infty_{j=0}b_j\infty,\qquad 1\le\lambda_i\le \biggl(\,\sum^i_{j=-\infty}a_j\biggr)^{-1},\quad i\in {\mathbb Z_+}. \end{gather*} Under these conditions, we construct bounded solutions of homogeneous and inhomogeneous systems of the form indicated above.
Keywords: algebraic system, co-conservative system, Toeplitz matrix, Wiener–Hopf equation.
@article{MZM_2011_89_1_a0,
     author = {L. G. Arabadzhyan},
     title = {An {Infinite} {Algebraic} {System} in the {Irregular} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a0/}
}
TY  - JOUR
AU  - L. G. Arabadzhyan
TI  - An Infinite Algebraic System in the Irregular Case
JO  - Matematičeskie zametki
PY  - 2011
SP  - 3
EP  - 11
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a0/
LA  - ru
ID  - MZM_2011_89_1_a0
ER  - 
%0 Journal Article
%A L. G. Arabadzhyan
%T An Infinite Algebraic System in the Irregular Case
%J Matematičeskie zametki
%D 2011
%P 3-11
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a0/
%G ru
%F MZM_2011_89_1_a0
L. G. Arabadzhyan. An Infinite Algebraic System in the Irregular Case. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a0/

[1] B. Z. Vulikh, Vvedenie v funktsionalnyi analiz, GIFML, M., 1958 | MR | Zbl

[2] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, GIFML, M., 1962 | MR | Zbl

[3] L. G. Arabadzhyan, “O diskretnykh uravneniyakh Vinera–Khopfa”, Matem. analiz i ego pril., 1980, 43–48

[4] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR | Zbl

[5] N. B. Yengibarian, “Factorization of Markov chains”, J. Theoret. Probab., 17:2 (2004), 459–481 | DOI | MR | Zbl

[6] L. G. Arabajian, M. T. Hakopian, “On one infinite algebraic system with a Toeplitz matrix”, J. Integral Equations Math. Phys., 1:1 (1992), 32–43 | MR

[7] N. B. Engibaryan, M. A. Mnatsakanyan, “Lineinye algebraicheskie sistemy s teplitsevymi matritsami”, Zh. vychisl. matem. i matem. fiz., 17:5 (1977), 1102–1116 | Zbl

[8] L. G. Arabadzhyan, “Ob odnom integralnom uravnenii teorii perenosa v neodnorodnoi srede”, Differents. uravneniya, 23:9 (1987), 1618–1622 | MR | Zbl