Minimal Involution-Free Nongroup Reduced Twisted Subsets
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 902-910

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and the element $xy^{-1}x$ lies in $K$ for any $x,y\in K$. We study finite involution-free twisted subsets that are not subgroups but all of whose proper twisted subsets are subgroups.
Mots-clés : group
Keywords: subgroup, twisted subset, involution-free subset.
@article{MZM_2010_88_6_a9,
     author = {A. L. Myl'nikov},
     title = {Minimal {Involution-Free} {Nongroup} {Reduced} {Twisted} {Subsets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--910},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/}
}
TY  - JOUR
AU  - A. L. Myl'nikov
TI  - Minimal Involution-Free Nongroup Reduced Twisted Subsets
JO  - Matematičeskie zametki
PY  - 2010
SP  - 902
EP  - 910
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/
LA  - ru
ID  - MZM_2010_88_6_a9
ER  - 
%0 Journal Article
%A A. L. Myl'nikov
%T Minimal Involution-Free Nongroup Reduced Twisted Subsets
%J Matematičeskie zametki
%D 2010
%P 902-910
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/
%G ru
%F MZM_2010_88_6_a9
A. L. Myl'nikov. Minimal Involution-Free Nongroup Reduced Twisted Subsets. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 902-910. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/