Minimal Involution-Free Nongroup Reduced Twisted Subsets
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 902-910
Voir la notice de l'article provenant de la source Math-Net.Ru
A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and the element $xy^{-1}x$ lies in $K$ for any $x,y\in K$. We study finite involution-free twisted subsets that are not subgroups but all of whose proper twisted subsets are subgroups.
Mots-clés :
group
Keywords: subgroup, twisted subset, involution-free subset.
Keywords: subgroup, twisted subset, involution-free subset.
@article{MZM_2010_88_6_a9,
author = {A. L. Myl'nikov},
title = {Minimal {Involution-Free} {Nongroup} {Reduced} {Twisted} {Subsets}},
journal = {Matemati\v{c}eskie zametki},
pages = {902--910},
publisher = {mathdoc},
volume = {88},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/}
}
A. L. Myl'nikov. Minimal Involution-Free Nongroup Reduced Twisted Subsets. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 902-910. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/