Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_6_a9, author = {A. L. Myl'nikov}, title = {Minimal {Involution-Free} {Nongroup} {Reduced} {Twisted} {Subsets}}, journal = {Matemati\v{c}eskie zametki}, pages = {902--910}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/} }
A. L. Myl'nikov. Minimal Involution-Free Nongroup Reduced Twisted Subsets. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 902-910. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a9/
[1] A. L. Mylnikov, “Konechnye perekruchennye gruppy”, Sib. matem. zhurn., 48:2 (2007), 369–375 | MR | Zbl
[2] M. Aschbacher, “Near subgroups of finite groups”, J. Group Theory, 1:2 (1998), 113–129 | DOI | MR | Zbl
[3] A. L. Mylnikov, “Minimalnye negruppovye skruchennye podmnozhestva, soderzhaschie involyutsiyu”, Algebra i logika, 46:4 (2007), 459–482 | MR | Zbl
[4] A. L. Mylnikov, “Nilpotentnost kommutanta konechnoi perekruchennoi gruppy”, Sib. matem. zhurn., 47:5 (2006), 1117–1127 | MR | Zbl
[5] A. L. Mylnikov, “Konechnye minimalnye neperekruchennye gruppy”, Vestn. Krasnoyarsk. gos. un-ta, 1 (2005), 71–76
[6] A. L. Mylnikov, “O konechnykh minimalnykh neperekruchennykh gruppakh”, Vestn. Krasnoyarsk. gos. un-ta, 4 (2005), 164–169
[7] V. V. Belyaev, A. L. Mylnikov, “Otsenka poryadka gruppy, porozhdennoi konechnym skruchennym podmnozhestvom”, Sib. matem. zhurn., 49:6 (2008), 1235–1237 | MR
[8] D. V. Veprintsev, A. L. Mylnikov, “Involyutivnaya dekompozitsiya gruppy i skruchennye podmnozhestva s malym kolichestvom involyutsii”, Sib. matem. zhurn., 49:2 (2008), 274–279 | MR | Zbl
[9] A. L. Mylnikov, “Abelevy perekruchennye gruppy”, Matem. sistemy, 3, Krasnoyarsk. gos. agrar. un-t, Krasnoyarsk, 2005, 59–61
[10] D. Gorenstein, Finite Groups, Harper Row Publ., New York, 1968 | MR | Zbl
[11] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 775–1029 | MR | Zbl