Shape-Preserving Interpolation by Cubic Splines
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 836-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of shape-preserving interpolation by cubic splines. We propose a unified approach to the derivation of sufficient conditions for the $k$‑monotonicity of splines (the preservation of the sign of any derivative) in interpolation of $k$-monotone data for $k=0,\dots,4$.
Keywords: cubic spline, shape-preserving interpolation, $k$‑monotonicity, $B$-spline, matrix with diagonal dominance.
@article{MZM_2010_88_6_a3,
     author = {Yu. S. Volkov and V. V. Bogdanov and V. L. Miroshnichenko and V. T. Shevaldin},
     title = {Shape-Preserving {Interpolation} by {Cubic} {Splines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {836--844},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a3/}
}
TY  - JOUR
AU  - Yu. S. Volkov
AU  - V. V. Bogdanov
AU  - V. L. Miroshnichenko
AU  - V. T. Shevaldin
TI  - Shape-Preserving Interpolation by Cubic Splines
JO  - Matematičeskie zametki
PY  - 2010
SP  - 836
EP  - 844
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a3/
LA  - ru
ID  - MZM_2010_88_6_a3
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%A V. V. Bogdanov
%A V. L. Miroshnichenko
%A V. T. Shevaldin
%T Shape-Preserving Interpolation by Cubic Splines
%J Matematičeskie zametki
%D 2010
%P 836-844
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a3/
%G ru
%F MZM_2010_88_6_a3
Yu. S. Volkov; V. V. Bogdanov; V. L. Miroshnichenko; V. T. Shevaldin. Shape-Preserving Interpolation by Cubic Splines. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 836-844. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a3/

[1] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR | Zbl

[2] V. L. Miroshnichenko, “Convex and monotone spline interpolation”, Constructive Theory of Functions, Proc. Intern. Conf. (Varna, Bulgaria, May 27–June 2, 1984), Publ. House of Bulgarian Acad. of Sci., Sofia, 1984, 610–620 | Zbl

[3] V. L. Miroshnichenko, “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, Priblizhenie splainami, Vychislitelnye sistemy, 137, IM SO AN SSSR, Novosibirsk, 1990, 31–57 | MR | Zbl

[4] Yu. S. Volkov, “O monotonnoi interpolyatsii kubicheskimi splainami”, Vychisl. tekhnologii, 6:6 (2001), 14–24 | MR | Zbl

[5] Yu. S. Volkov, “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, ZhVM i MF, 44:2 (2004), 231–241 | MR | Zbl

[6] Yu. S. Volkov, “O postroenii interpolyatsionnykh polinomialnykh splainov”, Splain-funktsii i ikh prilozheniya, Vychislitelnye sistemy, 159, IM SO RAN, Novosibirsk, 1997, 3–18 | MR

[7] Yu. S. Volkov, “Vpolne neotritsatelnye matritsy v metodakh postroeniya interpolyatsionnykh splainov nechetnoi stepeni”, Matem. tr., 7:2 (2004), 3–34 | MR | Zbl

[8] Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[9] V. V. Bogdanov, Yu. S. Volkov, “Vybor parametrov obobschennykh kubicheskikh splainov pri vypukloi interpolyatsii”, Sib. zhurn. vychisl. matem., 9:1 (2006), 5–22 | Zbl

[10] Yu. S. Volkov, “O nakhozhdenii polnogo interpolyatsionnogo splaina cherez $B$-splainy”, Sib. elektron. matem. izv., 5 (2008), 334–338 | MR

[11] Yu. S. Volkov, Ravnomernaya skhodimost proizvodnykh interpolyatsionnykh splainov nechetnoi stepeni, Preprint No 62, In-t matem. SO AN SSSR, Novosibirsk, 1984