Global H\"older Estimates for Optimal Transportation
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 708-728

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the well-known result due to Caffarelli concerning Lipschitz estimates for the optimal transportation $T$ of logarithmically concave probability measures. Suppose that $T\colon\mathbb R^d\to\mathbb R^d$ is the optimal transportation mapping $\mu=e^{-V}\,dx$ to $\nu=e^{-W}\,dx$. Suppose that the second difference-differential $V$ is estimated from above by a power function and that the modulus of convexity $W$ is estimated from below by the function $A_q|x|^{1+q}$, $q\ge1$. We prove that, under these assumptions, the mapping $T$ is globally Hölder with the Hölder constant independent of the dimension. In addition, we study the optimal mapping $T$ of a measure $\mu$ to Lebesgue measure on a convex bounded set $K\subset\mathbb R^d$. We obtain estimates of the Lipschitz constant of the mapping $T$ in terms of $d$, $\operatorname{diam}(K)$, and $DV$, $D^2V$.
Keywords: optimal transportation of measures, Lipschitz mapping, Hölder estimate, probability measure, Gaussian measure, Lipschitz estimate, modulus of convexity.
@article{MZM_2010_88_5_a6,
     author = {A. V. Kolesnikov},
     title = {Global {H\"older} {Estimates} for {Optimal} {Transportation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {708--728},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a6/}
}
TY  - JOUR
AU  - A. V. Kolesnikov
TI  - Global H\"older Estimates for Optimal Transportation
JO  - Matematičeskie zametki
PY  - 2010
SP  - 708
EP  - 728
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a6/
LA  - ru
ID  - MZM_2010_88_5_a6
ER  - 
%0 Journal Article
%A A. V. Kolesnikov
%T Global H\"older Estimates for Optimal Transportation
%J Matematičeskie zametki
%D 2010
%P 708-728
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a6/
%G ru
%F MZM_2010_88_5_a6
A. V. Kolesnikov. Global H\"older Estimates for Optimal Transportation. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 708-728. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a6/