Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_5_a6, author = {A. V. Kolesnikov}, title = {Global {H\"older} {Estimates} for {Optimal} {Transportation}}, journal = {Matemati\v{c}eskie zametki}, pages = {708--728}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a6/} }
A. V. Kolesnikov. Global H\"older Estimates for Optimal Transportation. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 708-728. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a6/
[1] D. Bakry, M. Émery, “Diffusions hypercontractives”, Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer-Verlag, Berlin, 1985, 177–206 | DOI | MR | Zbl
[2] D. Bakry, M. Ledoux, “Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator”, Invent. Math., 123:2 (1996), 259–281 | MR | Zbl
[3] L. A. Caffarelli, “Monotonicity properties of optimal transportation and the FKG and related inequalities”, Comm. Math. Phys., 214:3 (2000), 547–563 | DOI | MR | Zbl
[4] G. Hargé, “A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces”, Probab. Theory Related Fields, 130:3 (2004), 415–440 | DOI | MR | Zbl
[5] S. I. Valdimarsson, “On the Hessian of the optimal transport potential”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), 6:3 (2007), 441–456 | MR | Zbl
[6] A. V. Pogorelov, “O regulyarnosti obobschennykh reshenii uravneniya $\det(\partial ^{2}u/\partial x^{i}\partial x^{j}) =\varphi(x^{1},x^{2},\dots,x^{n})>0$”, Dokl. AN SSSR, 200:5 (1971), 534–537 | MR | Zbl
[7] C. E. Gutiérrez, The Monge–Ampère Equation, Progr. Nonlinear Differential Equations Appl., 44, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl
[8] N. V. Krylov, “Fully nonlinear second order elliptic equations: recent development”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3-4 (1997), 569–595 | MR | Zbl
[9] L. A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl
[10] J. Urbas, Mass transfer problems, Lecture Notes, Univ. of Bonn, Bonn, 1998
[11] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[12] M. Talagrand, “A new isoperimetric inequality and the concentration of measure phenomenon”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1469, Springer-Verlag, Berlin, 1991, 91–124 | DOI | MR | Zbl
[13] M. Ledoux, The Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[14] S. G. Bobkov, M. Ledoux, “From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities”, Geom. Funct. Anal., 10:5 (2000), 1028–1052 | DOI | MR | Zbl
[15] E. Milman, S. Sodin, “An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies”, J. Funct. Anal., 254:5 (2008), 1235–1268, arXiv: math.PR/0703857 | DOI | MR | Zbl
[16] D. Cordero-Erausquin, W. Gangbo, C. Houdré, “Inequalities for generalized entropy and optimal transportation”, Recent Advances in the Theory and Applications of Mass Transport, Contemp. Math., 353, Amer. Math. Soc., Providence, RI, 2004, 73–94 | MR | Zbl
[17] F. Barthe, A. V. Kolesnikov, “Mass transport and variants of the logarithmic Sobolev inequality”, J. Geom. Anal., 18:4 (2008), 921–979 | DOI | MR | Zbl
[18] L. A. Caffarelli, “The regularity of mappings with a convex potential”, J. Amer. Math. Soc., 5:1 (1992), 99–104 | DOI | MR | Zbl
[19] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[20] L. A. Caffarelli, “Boundary regularity of maps with a convex potentials. II”, Ann. of Math. (2), 144:3 (1996), 453–496 | DOI | MR | Zbl
[21] V. I. Bogachev, Gaussovskie mery, Nauka, M., 1997 | MR | Zbl
[22] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl
[23] A. V. Kolesnikov, “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl. (9), 83:11 (2004), 1373–1404 | MR | Zbl